Suppr超能文献

基于结构的分析过渡金属配位化合物和簇中硝酰配体的振动光谱。

A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.

机构信息

Laboratorio de Espectroscopía Molecular y Atómica, Departamento de Química, Facultad Experimental de Ciencias, La Universidad del Zulia, Maracaibo, Estado Zulia, República Bolivariana de Venezuela.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jan;78(1):7-28. doi: 10.1016/j.saa.2010.08.001. Epub 2010 Aug 17.

Abstract

The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M2(μ2-NO)]; (c) threefold nitrosyl bridges, [M3(μ3-NO)]; (d) σ/π-dihaptonitrosyls or "side-on" nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls). Typical ranges for the values of internuclear N-O and M-N bond-distances and M-N-O bond-angles for linear nitrosyls are: 1.14-1.20 Å/1.60-1.90 Å/180-160° and for bent nitrosyls are 1.16-1.22 Å/1.80-2.00 Å/140-110°. The [M2(μ2-NO)] bridges have been divided into those that contain one or several metal-metal bonds and those without a formal metal/metal bond (M⋯M). Typical ranges for the M-M, N-O, M-N bond distances and M-N-M bond angles for the normal twofold NO bridges are: 2.30-3.00 Å/1.18-1.22 Å/1.80-2.00 Å/90-70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10-3.40 Å/1.20-1.24 Å/1.90-2.10 Å/130-110°. In both situations the N-O vector is approximately at right angle to the M-M (or M⋯M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M3-plane of a cluster compound. Characteristic values for the N-O and M-N bond-distances of these NO bridges are: 1.24-1.28 Å/1.80-1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis. The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the "effective atomic number (EAN)" or "18-electron" rule. In the paucity of enough vibrational spectroscopic data from complexes with only nitrosyl ligands, it turned out to be very advantageous to use wavenumbers from the spectra of uncharged and saturated nitrosyl/carbonyl metal complexes as references, because the presence of a carbonyl ligand was found to be neutral in its effect on the ν(NO)-values. The wide wavenumber range found for the ν(NO) values of linear MNO complexes are then presented in terms of the estimated effects of net ionic charges, or of electron-withdrawing or electron-donating ligands bonded to the same metal atom. Using this approach we have found that: (a) the effect for a unit positive charge is [plus 100 cm(-1)] whereas for a unit negative charge it is [minus 145 cm(-1)]. (b) For electron-withdrawing co-ligands the estimated effects are: terminal CN [plus 50 cm(-1)]; terminal halogens [plus 30 cm(-1)]; bridging or quasi-bridging halogens [plus 15 cm(-1)]. (c) For electro donating co-ligands they are: PF3 [plus 10 cm(-1)]; P(OPh)3 [-30 cm(-1)]; P(OR)3 (R=alkyl group) [-40 cm(-1)]; PPh3 [-55 cm(-1)]; PR3 (R=alkyl group) [-70 cm(-1)]; and η5-C5H5 [-60 cm(-1)]; η5-C5H4Me [-70 cm(-1)]; η5-C5Me5 [-80 cm(-1)]. These values were mostly derived from the spectra of nitrosyl complexes that have been corrected for the presence of only a single electronically-active co-ligand. After making allowance for ionic charges or strongly-perturbing ligands on the same metal atom, the adjusted 'neutral-co-ligand' ν(NO)-values (in cm(-1)) are for linear nitrosyl complexes with transition metals of Period 4 of the Periodic Table, i.e. those with atomic orbitals (…4s3d4p): [ca. 1750, Cr(NO)]; [1775,Mn(NO)]; [1796,Fe(NO)]; [1817,Co(NO)]; [ca. 1840, Ni(NO)]. Period 5 (…5s4d5p): [1730 Mo(NO)]; [-, Tc(NO)]; [1745,Ru(NO)]; [1790,Rh(NO)]; [ca. 1845, Pd(NO)]. Period 6 (…6s4f5d6p), [1720,W(NO)]; [1730,Re(NO)]; [1738,Os(NO)]; [1760,Ir(NO)]; [-, Pt] respectively. Environmental differences to these values, e.g. data taken in polar solutions or in the crystalline state, can cause ν(NO) variations (mostly reductions) of up to ca. 30 cm(-1). Three spectroscopic criteria are used to distinguish between linear and bent NO groups. These are: (i) the values of ν(14NO) themselves, and (ii) the isotopic band shift--(IBS)--parameter which is defined as [ν(14NO)-ν(15NO)], and, (iii) the isotopic band ratio--(IBR)--given by [ν(15NO/ν14NO)]. The former is illustrated with the ν(14NO)-data from trigonal bipyramidal (TBP) and tetragonal pyramidal (TP) structures of [M(NO(L)4] complexes (where M=Fe, Co, Ru, Rh, Os, Ir and L=ligand). These values indicate that linear (180-170°) and strongly bent (130-120°) NO groups in these compounds absorb over the 1862-1690 cm(-1) and 1720-1525 cm(-1)-regions, respectively. As was explicitly demonstrated for the linear nitrosyls, these extensive regions reflect the presence in different complexes of a very wide range of co-ligands or ionic charges associated with the metal atom of the nitrosyl group. A plot of the IBS parameter against M-N-O bond-angle for compounds with general formulae [M(NO)(L)y] (y=4, 5, 6) reveals that the IBS-values are clustered between 45 and 30 cm(-1) or between 37 and 25 cm(-1) for linear or bent NO groups, respectively. A plot of IBR shows a less well defined pattern. Overall it is suggested that bent nitrosyls absorb ca. 60-100 cm(-1) below, and have smaller co-ligand band-shifts, than their linear counterparts. Spectroscopic ν(NO) data of the bridging or other types of NO ligands are comparatively few and therefore it has not been possible to give other than general ranges for 'neutral co-ligand' values. Moreover the bridging species data often depend on corrections for the effects of electronically-active co-ligands such as cyclopentadienyl-like groups. The derived neutral co-ligand estimates, ν(NO)*, are: (a) twofold bridged nitrosyls with a metal-metal bond order of one, or greater than one, absorb at ca. 1610-1490 cm(-1); (b) twofold bridged nitrosyl ligands with a longer non-bonding M⋯M distance, ca. 1520-1490 cm(-1); (c) threefold bridged nitrosyls, ca. 1470-1410 cm(-1); (d) σ/π dihaptonitrosyl, [M(η2-NO)], where M=Cr, Mn and Ni; ca. 1490-1440 cm(-1). Isonitrosyls, from few examples, appear to absorb below ca. 1100 cm(-1). To be published DFT calculations of the infrared and Raman spectra of complexes with formulae [M(NO)4-n(CO)n] (M=Cr, Mn, Fe, Co, Ni, and n=0, 1, 2, 3, 4, respectively) are used as models for the assignments of the ν(MN) and δ(MNO) bands from more complex metal nitrosyls.

摘要

一氧化氮(NO)与一个或多个过渡金属(M)原子形成的配位和簇化合物中的振动光谱,与通过衍射方法确定的各种结构有关。这些结构分为:(a)端(线性和弯曲)亚硝酰基,[M(σ-NO)]或[M(NO)];(b) 双亚硝酰基桥,[M2(μ2-NO)];(c) 三亚硝酰基桥,[M3(μ3-NO)];(d) σ/π-双端亚硝酰基或“侧接”亚硝酰基;和(e) 异亚硝酰基(氧键合亚硝酰基)。线性亚硝酰基中典型的 N-O 和 M-N 键距离和 M-N-O 键角的数值范围为:1.14-1.20 Å/1.60-1.90 Å/180-160°,弯曲亚硝酰基中为 1.16-1.22 Å/1.80-2.00 Å/140-110°。[M2(μ2-NO)]桥分为含有一个或多个金属-金属键和没有形式金属/金属键(M⋯M)的桥。正常的双亚硝酰基桥的 M-M、N-O、M-N 键距离和 M-N-M 键角的典型数值范围为:2.30-3.00 Å/1.18-1.22 Å/1.80-2.00 Å/90-70°,而类似的长双亚硝酰基桥的这些数值范围为 3.10-3.40 Å/1.20-1.24 Å/1.90-2.10 Å/130-110°。在这两种情况下,N-O 向量大约与实验误差范围内的 M-M(或 M⋯M)向量成直角;即 NO 基团对称地键合到两个金属原子上。相比之下,三亚硝酰基桥可以对称或不对称地键合到簇化合物的 M3 平面上。这些亚硝酰基桥的 N-O 和 M-N 键距离的特征值分别为:1.24-1.28 Å/1.80-1.90 Å。由于已知的双端亚硝酰基和异亚硝酰基配合物很少,因此根据单个配合物讨论了这些配合物的结构特征。考虑到非常广泛的振动光谱文献,重点是稳定闭壳层金属配合物中线性键合的 NO 配体的数据;即那些与“有效原子数(EAN)”或“18 电子”规则一致的配体。在只有亚硝酰基配体的配合物中,振动光谱数据不足的情况下,使用未带电荷和饱和的亚硝酰基/羰基金属配合物的谱带的波数作为参考非常有利,因为发现羰基配体对 ν(NO) 值的影响是中性的。然后,用估计的净离子电荷或键合到同一金属原子的电子受主或给体配体的影响来表示线性 MNO 配合物中 ν(NO) 值的宽波数范围。使用这种方法,我们发现:(a) 单位正电荷的影响为[+100 cm(-1)],而单位负电荷的影响为[-145 cm(-1)]。(b) 对于电子受主配位体,估计的影响为:端基 CN [+50 cm(-1)];端基卤素 [+30 cm(-1)];桥接或准桥接卤素 [+15 cm(-1)]。(c) 对于电子给体配位体,它们是:PF3 [+10 cm(-1)];P(OPh)3 [-30 cm(-1)];P(OR)3(R=烷基)[-40 cm(-1)];PPh3 [-55 cm(-1)];PR3(R=烷基)[-70 cm(-1)];和 η5-C5H5 [-60 cm(-1)];η5-C5H4Me [-70 cm(-1)];η5-C5Me5 [-80 cm(-1)]。这些值主要来自于已经校正了只有一个电子活性配位体的亚硝酰基配合物的光谱。在考虑到同一金属原子上的离子电荷或强烈扰动的配体后,调整后的“中性配位体”ν(NO)*值(以 cm(-1)为单位)适用于周期表第四周期的过渡金属的线性亚硝酰基配合物,即那些具有原子轨道(...4s3d4p)的配合物:[约 1750,Cr(NO)];[1775,Mn(NO)];[1796,Fe(NO)];[1817,Co(NO)];[约 1840,Ni(NO)]。第五周期(...5s4d5p):[1730 Mo(NO)];[-, Tc(NO)];[1745,Ru(NO)];[1790,Rh(NO)];[约 1845,Pd(NO)]。第六周期(...6s4f5d6p),[1720,W(NO)];[1730,Re(NO)];[1738,Os(NO)];[1760,Ir(NO)];[-, Pt]。环境差异,例如在极性溶液或晶体状态下采集的数据,可能导致 ν(NO)值(主要是降低)发生高达约 30 cm(-1)的变化。有三个光谱标准可用于区分线性和弯曲的 NO 基团。它们是:(i) 14NO 本身的数值,以及(ii) 同位素带位移(IBS)参数,定义为[ν(14NO)-ν(15NO)],和,(iii) 同位素带比(IBR),表示为[ν(15NO/ν14NO)]。前一个标准通过三斜双锥(TBP)和四方锥(TP)结构的[M(NO(L)4]配合物(其中 M=Fe、Co、Ru、Rh、Ir 和 L=配体)的 ν(14NO)数据来说明。这些值表明,在这些化合物中,线性(180-170°)和强弯曲(130-120°)的 NO 基团吸收在 1862-1690 cm(-1)和 1720-1525 cm(-1)区域内,分别。正如线性亚硝酰基化合物所明确证明的那样,这些广泛的区域反映了在不同的配合物中存在非常广泛的配体或与亚硝酰基基团的金属原子相关的离子电荷。对于一般式为[M(NO)(L)y](y=4,5,6)的化合物,IBS 参数与 M-N-O 键角的关系表明,IBS 值在 45 和 30 cm(-1)之间,或者在 37 和 25 cm(-1)之间,分别为线性或弯曲的 NO 基团。IBR 图显示出不太明确的模式。总的来说,这表明弯曲的亚硝酰基化合物的吸收值比其线性对应物低约 60-100 cm(-1),并且具有较小的配体带位移。桥接或其他类型的 NO 配体的光谱 ν(NO)数据相对较少,因此无法给出“中性配体”值的一般范围。此外,桥接物种的数据通常取决于对电子活性配体(如环戊二烯基样基团)的影响的修正。所得的中性配体估计值,ν(NO),为:(a) 金属-金属键序为 1 或大于 1 的双桥接亚硝酰基,吸收在约 1610-1490 cm(-1);(b) 具有较长的非键合 M⋯M 距离的双桥接亚硝酰基,约 1520-1490 cm(-1);(c) 三桥接亚硝酰基,约 1470-1410 cm(-1);(d) σ/π 双端亚硝酰基,[M(η2-NO)],其中 M=Cr、Mn 和 Ni;约 1490-1440 cm(-1)。异亚硝酰基,从少数例子来看,似乎在低于约 1100 cm(-1)处吸收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验