CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France.
PLoS Comput Biol. 2010 Nov 18;6(11):e1001000. doi: 10.1371/journal.pcbi.1001000.
DNase I requires Ca²+ and Mg²+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca²+ while the other two sites coordinate Mg²+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca²+ stabilizes the functional DNase I structure. The presence of Mg²+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions.
DNase I 需要 Ca²⁺和 Mg²⁺来水解双链 DNA。然而,DNase I 的离子结合位点的数量和位置仍不清楚,这些反离子的作用也不清楚。本研究采用分子动力学模拟,发现牛胰脏(bp)DNase I 含有四个离子结合口袋。其中两个强烈结合 Ca²⁺,而另外两个位点则与 Mg²⁺配位。这些理论结果得到了重新审视包含 bpDNase I 的晶体结构的有力支持。一个 Ca²⁺稳定了功能性的 DNase I 结构。Mg²⁺存在于 bpDNase I 的催化口袋附近,这进一步证实了阳离子辅助水解机制的观点。重要的是,泊松-玻尔兹曼型静电势计算表明,二价阳离子共同控制了 bpDNase I 和 DNA 之间的静电契合。这些结果提高了我们对阳离子在 bpDNase I 生物学功能中的重要作用的理解。在不同物种的 DNase I 和 DNase I 样蛋白中,参与鉴定的阳离子结合位点的氨基酸高度保守,这表明我们的发现通常适用于所有的 DNase I-DNA 相互作用。