School of Computer Science and Engineering, Inha University, Incheon, Korea.
BMC Genomics. 2010 Dec 2;11 Suppl 4(Suppl 4):S14. doi: 10.1186/1471-2164-11-S4-S14.
A gene regulatory relation often changes over time rather than being constant. But many gene regulatory networks available in databases or literatures are static in the sense that they are either snapshots of gene regulatory relations at a time point or union of successive gene regulations over time. Such static networks cannot represent temporal aspects of gene regulatory interactions such as the order of gene regulations or the pace of gene regulations.
We developed a new qualitative method for representing dynamic gene regulatory relations and algorithms for identifying dynamic gene regulations from the time-series gene expression data using two types of scores. The identified gene regulatory interactions and their temporal properties are visualized as a gene regulatory network. All the algorithms have been implemented in a program called GeneNetFinder (http://wilab.inha.ac.kr/genenetfinder/) and tested on several gene expression data.
The dynamic nature of dynamic gene regulatory interactions can be inferred and represented qualitatively without deriving a set of differential equations describing the interactions. The approach and the program developed in our study would be useful for identifying dynamic gene regulatory interactions from the large amount of gene expression data available and for analyzing the interactions.
基因调控关系通常随时间而变化,而非保持不变。但是,数据库或文献中提供的许多基因调控网络在某种意义上是静态的,因为它们要么是某个时间点的基因调控关系的快照,要么是随时间推移的连续基因调控的并集。这样的静态网络无法表示基因调控相互作用的时间方面,例如基因调控的顺序或基因调控的速度。
我们开发了一种新的定性方法来表示动态基因调控关系,并使用两种类型的分数从时间序列基因表达数据中识别动态基因调控。所识别的基因调控相互作用及其时间特性被可视化作为基因调控网络。所有算法都已在名为 GeneNetFinder(http://wilab.inha.ac.kr/genenetfinder/)的程序中实现,并在几个基因表达数据上进行了测试。
可以推断和定性表示动态基因调控相互作用的动态性质,而无需推导出一组描述相互作用的微分方程。我们研究中开发的方法和程序将有助于从大量可用的基因表达数据中识别动态基因调控相互作用,并分析这些相互作用。