Suppr超能文献

秀丽隐杆线虫模型作为神经毒理学的可靠工具。

The Caenorhabiditis elegans model as a reliable tool in neurotoxicology.

机构信息

Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Hum Exp Toxicol. 2012 Mar;31(3):236-43. doi: 10.1177/0960327110392084. Epub 2010 Dec 9.

Abstract

Caenorhabiditis elegans (C. elegans) offers an attractive experimental platform as it has a short life cycle, is inexpensive to maintain and most importantly has high degree of evolutionary conservation with higher eukaryotes. Understanding the contribution of inherent genes that regulate neurotoxicity and antioxidant stress responses in the worm provides critical insight into mechanisms of mammalian neurotoxicity. The C. elegans model readily enables multi-gene approach, allowing for combinatorial genetic variation to be studied within the context of the influence of multigenic polymorphisms in environmental risk and vulnerability. This review provides a synopsis of recent studies on metal and pesticides toxicity in C. elegans, highlighting the utility of the model system in understanding molecular mechanisms that underlie developmental, reproductive and neuronal damage. The continuation of these investigations combining basic toxicological experimentation with novel genetic and high throughput methods will continue to make C. elegans an invaluable tool for future research, providing insight into molecular and cellular mechanisms of toxicity.

摘要

秀丽隐杆线虫(C. elegans)提供了一个有吸引力的实验平台,因为它具有生命周期短、维护成本低的特点,最重要的是,它与高等真核生物具有高度的进化保守性。了解调节线虫神经毒性和抗氧化应激反应的固有基因的贡献,为哺乳动物神经毒性的机制提供了重要的见解。秀丽隐杆线虫模型可以很容易地采用多基因方法,允许在多基因多态性对环境风险和易感性的影响的背景下研究组合遗传变异。本综述概述了近年来在秀丽隐杆线虫中金属和农药毒性的研究,强调了该模型系统在理解发育、生殖和神经元损伤的分子机制方面的应用。通过将基础毒理学实验与新的遗传和高通量方法相结合,继续进行这些研究,将使秀丽隐杆线虫成为未来研究的宝贵工具,为毒性的分子和细胞机制提供深入了解。

相似文献

1
The Caenorhabiditis elegans model as a reliable tool in neurotoxicology.
Hum Exp Toxicol. 2012 Mar;31(3):236-43. doi: 10.1177/0960327110392084. Epub 2010 Dec 9.
2
Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans.
J Toxicol Environ Health B Crit Rev. 2014;17(5):284-306. doi: 10.1080/10937404.2014.933722.
3
Utility of Caenorhabditis elegans in high throughput neurotoxicological research.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):62-7. doi: 10.1016/j.ntt.2008.11.005. Epub 2008 Dec 7.
4
Neurodegeneration Induced by Metals in Caenorhabditis elegans.
Adv Neurobiol. 2017;18:355-383. doi: 10.1007/978-3-319-60189-2_18.
5
C. elegans as a model in developmental neurotoxicology.
Toxicol Appl Pharmacol. 2018 Sep 1;354:126-135. doi: 10.1016/j.taap.2018.03.016. Epub 2018 Mar 14.
6
Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology.
Toxicol Sci. 2008 Nov;106(1):5-28. doi: 10.1093/toxsci/kfn121. Epub 2008 Jun 19.
7
Approaches to Anesthetic Mechanisms: The C. elegans Model.
Methods Enzymol. 2018;602:133-151. doi: 10.1016/bs.mie.2018.01.006. Epub 2018 Mar 3.
8
A high-throughput microplate toxicity screening platform based on Caenorhabditis elegans.
Ecotoxicol Environ Saf. 2022 Oct 15;245:114089. doi: 10.1016/j.ecoenv.2022.114089. Epub 2022 Sep 18.
9
Medium- and high-throughput screening of neurotoxicants using C. elegans.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):68-73. doi: 10.1016/j.ntt.2008.12.004. Epub 2009 Jan 6.
10
Caenorhabditis elegans as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction.
Curr Protoc Toxicol. 2015 Nov 2;66:20.10.1-20.10.25. doi: 10.1002/0471140856.tx2010s66.

引用本文的文献

1
Toxicity assessment of imatinib mesylate and a related impurity: in vitro and in vivo approaches.
Toxicol Res (Camb). 2025 Feb 26;14(1):tfaf029. doi: 10.1093/toxres/tfaf029. eCollection 2025 Feb.
5
7
Neurotoxicology of metals and metallic nanoparticles in .
Adv Neurotoxicol. 2023;9:107-148. doi: 10.1016/bs.ant.2023.03.001. Epub 2023 Apr 5.
8
Current status and future directions for a neurotoxicity hazard assessment framework that integrates approaches.
Comput Toxicol. 2022 May;22. doi: 10.1016/j.comtox.2022.100223. Epub 2022 Mar 17.
9
Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo.
Int J Mol Sci. 2022 Feb 7;23(3):1871. doi: 10.3390/ijms23031871.
10
A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode .
Nanomaterials (Basel). 2021 Dec 7;11(12):3314. doi: 10.3390/nano11123314.

本文引用的文献

2
Hormetic effect of methylmercury on Caenorhabditis elegans.
Toxicol Appl Pharmacol. 2010 Oct 15;248(2):156-64. doi: 10.1016/j.taap.2010.07.023. Epub 2010 Aug 5.
3
The toxicity of depleted uranium.
Int J Environ Res Public Health. 2010 Jan;7(1):303-13. doi: 10.3390/ijerph7010303. Epub 2010 Jan 25.
6
Caenorhabditis elegans metallothioneins protect against toxicity induced by depleted uranium.
Toxicol Sci. 2009 Oct;111(2):345-54. doi: 10.1093/toxsci/kfp161. Epub 2009 Jul 17.
9
Induction of reproductive deficits in nematode Caenorhabditis elegans exposed to metals at different developmental stages.
Reprod Toxicol. 2009 Jul;28(1):90-5. doi: 10.1016/j.reprotox.2009.03.007. Epub 2009 Mar 25.
10
Characterization of the effects of methylmercury on Caenorhabditis elegans.
Toxicol Appl Pharmacol. 2009 Oct 15;240(2):265-72. doi: 10.1016/j.taap.2009.03.013. Epub 2009 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验