Suppr超能文献

四跨膜蛋白 CD82 会在酸性化之前被特异性招募到真菌和细菌吞噬体。

The tetraspanin CD82 is specifically recruited to fungal and bacterial phagosomes prior to acidification.

机构信息

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.

出版信息

Infect Immun. 2011 Mar;79(3):1098-106. doi: 10.1128/IAI.01135-10. Epub 2010 Dec 13.

Abstract

CD82 is a member of the tetraspanin superfamily, whose physiological role is best described in the context of cancer metastasis. However, CD82 also associates with components of the class II major histocompatibility complex (MHC) antigen presentation pathway, including class II MHC molecules and the peptide-loading machinery, as well as CD63, another tetraspanin, suggesting a role for CD82 in antigen presentation. Here, we observe the dynamic rearrangement of CD82 after pathogen uptake by imaging CD82-mRFP1 expressed in primary living dendritic cells. CD82 showed rapid and specific recruitment to Cryptococcus neoformans-containing phagosomes compared to polystyrene-containing phagosomes, similar to CD63. CD82 was also actively recruited to phagosomes containing other pathogenic fungi, including Candida albicans and Aspergillus fumigatus. Recruitment of CD82 to fungal phagosomes occurred independently of Toll-like receptor (TLR) signaling. Recruitment was not limited to fungi, as bacterial organisms, including Escherichia coli and Staphylococcus aureus, also induced CD82 recruitment to the phagosome. CD82 intersected the endocytic pathway used by lipopolysaccharide (LPS), implicating CD82 in trafficking of small, pathogen-associated molecules. Despite its partial overlap with lysosomal compartments, CD82 recruitment to C. neoformans-containing phagosomes occurred independently of phagosome acidification. Kinetic analysis of fluorescence imaging revealed that CD82 and class II MHC simultaneously appear in the phagosome, indicating that the two proteins may be associated. Together, these data show that the CD82 tetraspanin is specifically recruited to pathogen-containing phagosomes prior to fusion with lysosomes.

摘要

CD82 是四跨膜超家族的成员,其生理作用在癌症转移的背景下描述得最好。然而,CD82 也与 II 类主要组织相容性复合物 (MHC) 抗原呈递途径的成分相关,包括 II 类 MHC 分子和肽加载机制,以及另一个四跨膜蛋白 CD63,这表明 CD82 在抗原呈递中发挥作用。在这里,我们通过对原代活树突状细胞中表达的 CD82-mRFP1 进行成像来观察病原体摄取后 CD82 的动态重排。与含有聚苯乙烯的吞噬体相比,CD82 快速且特异性地募集到含有新生隐球菌的吞噬体,类似于 CD63。CD82 也被主动募集到含有其他致病性真菌的吞噬体中,包括白色念珠菌和烟曲霉。CD82 向真菌吞噬体的募集独立于 Toll 样受体 (TLR) 信号。募集不仅限于真菌,因为细菌,包括大肠杆菌和金黄色葡萄球菌,也诱导 CD82 募集到吞噬体。CD82 与内吞途径相交,该途径用于脂多糖 (LPS),这意味着 CD82 参与了小的、与病原体相关的分子的运输。尽管它与溶酶体区室部分重叠,但 CD82 向含有新生隐球菌的吞噬体的募集独立于吞噬体酸化。荧光成像的动力学分析表明,CD82 和 II 类 MHC 同时出现在吞噬体中,表明这两种蛋白可能相关。综上所述,这些数据表明,CD82 四跨膜蛋白在与溶酶体融合之前被特异性募集到含有病原体的吞噬体。

相似文献

1
The tetraspanin CD82 is specifically recruited to fungal and bacterial phagosomes prior to acidification.
Infect Immun. 2011 Mar;79(3):1098-106. doi: 10.1128/IAI.01135-10. Epub 2010 Dec 13.
2
Recruitment of CD63 to Cryptococcus neoformans phagosomes requires acidification.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15945-50. doi: 10.1073/pnas.0607528103. Epub 2006 Oct 16.
3
Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to .
J Immunol. 2019 Jun 1;202(11):3256-3266. doi: 10.4049/jimmunol.1801384. Epub 2019 Apr 22.
6
Impact of the TAP-like transporter in antigen presentation and phagosome maturation.
Mol Immunol. 2019 Sep;113:75-86. doi: 10.1016/j.molimm.2018.06.268. Epub 2018 Jun 23.
9
Real-time visualization of phagosomal pH manipulation by in an immune signal-dependent way.
Front Cell Infect Microbiol. 2022 Sep 23;12:967486. doi: 10.3389/fcimb.2022.967486. eCollection 2022.
10
Dynamics within tetraspanin pairs affect MHC class II expression.
J Cell Sci. 2012 Jan 15;125(Pt 2):328-39. doi: 10.1242/jcs.088047. Epub 2012 Feb 2.

引用本文的文献

1
Human tetraspanin CD81 facilitates invasion of into human epithelial cells.
Virulence. 2024 Dec;15(1):2399792. doi: 10.1080/21505594.2024.2399792. Epub 2024 Sep 24.
2
Molecular characterization, expression pattern and immunologic function of in large yellow croaker ().
Front Immunol. 2024 Feb 2;15:1301877. doi: 10.3389/fimmu.2024.1301877. eCollection 2024.
3
A CD63 Homolog Specially Recruited to the Fungi-Contained Phagosomes Is Involved in the Cellular Immune Response of Oyster .
Front Immunol. 2020 Jul 22;11:1379. doi: 10.3389/fimmu.2020.01379. eCollection 2020.
4
CD82 controls CpG-dependent TLR9 signaling.
FASEB J. 2019 Nov;33(11):12500-12514. doi: 10.1096/fj.201901547R. Epub 2019 Aug 13.
5
Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to .
J Immunol. 2019 Jun 1;202(11):3256-3266. doi: 10.4049/jimmunol.1801384. Epub 2019 Apr 22.
6
Tetraspanins as Organizers of Antigen-Presenting Cell Function.
Front Immunol. 2018 May 23;9:1074. doi: 10.3389/fimmu.2018.01074. eCollection 2018.
7
CD82 hypomethylation is essential for tuberculosis pathogenesis via regulation of RUNX1-Rab5/22.
Exp Mol Med. 2018 May 14;50(5):1-15. doi: 10.1038/s12276-018-0091-4.
8
Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica.
Dev Genes Evol. 2016 Mar;226(2):87-98. doi: 10.1007/s00427-016-0530-y. Epub 2016 Mar 2.
9
Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation.
Front Immunol. 2016 Jan 11;6:653. doi: 10.3389/fimmu.2015.00653. eCollection 2015.
10
Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence.
J Immunol. 2015 Mar 1;194(5):2219-31. doi: 10.4049/jimmunol.1402376. Epub 2015 Jan 30.

本文引用的文献

2
Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling.
J Cell Biol. 2010 Sep 20;190(6):1079-91. doi: 10.1083/jcb.201002049. Epub 2010 Sep 13.
3
Tasting the fungal cell wall.
Cell Microbiol. 2010 Jul;12(7):863-72. doi: 10.1111/j.1462-5822.2010.01474.x. Epub 2010 May 6.
4
Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling.
J Cell Sci. 2010 Mar 1;123(Pt 5):723-35. doi: 10.1242/jcs.062497. Epub 2010 Feb 9.
6
CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts.
FASEB J. 2009 Oct;23(10):3273-88. doi: 10.1096/fj.08-123414. Epub 2009 Jun 4.
7
Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation.
Nature. 2009 Mar 5;458(7234):78-82. doi: 10.1038/nature07781.
8
Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment.
PLoS Pathog. 2008 Dec;4(12):e1000227. doi: 10.1371/journal.ppat.1000227. Epub 2008 Dec 5.
9
Cryptococcosis in solid organ transplant recipients: current state of the science.
Clin Infect Dis. 2008 Nov 15;47(10):1321-7. doi: 10.1086/592690.
10
Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis.
Cell Signal. 2009 Feb;21(2):196-211. doi: 10.1016/j.cellsig.2008.08.023. Epub 2008 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验