Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
J Phys Chem B. 2011 Jan 20;115(2):217-30. doi: 10.1021/jp106776v. Epub 2010 Dec 20.
At physiological pH, a PAMAM dendrimer is positively charged and can effectively bind negatively charged DNA. Currently, there has been great interest in understanding this complexation reaction both for fundamental (as a model for complex biological reactions) as well as for practical (as a gene delivery material and probe for sensing DNA sequence) reasons. Here, we have studied the complexation between double-stranded DNA (dsDNA) and various generations of PAMAM dendrimers (G3-G5) through atomistic molecular dynamics simulations in the presence of water and ions. We report the compaction of DNA on a nanosecond time scale. This is remarkable, given the fact that such a short DNA duplex with a length close to 13 nm is otherwise thought to be a rigid rod. Using several nanoseconds long MD simulations, we have observed various binding modes of dsDNA and dendrimers for various generations of PAMAM dendrimers at varying charge ratios, and it confirms some of the binding modes proposed earlier. The binding is driven by the electrostatic interaction, and the larger the dendrimer charge, the stronger the binding affinity. As DNA wraps/binds to the dendrimer, counterions originally condensed onto DNA (Na+) and the dendrimer (Cl(-)) get released. We calculate the entropy of counterions and show that there is gain in entropy due to counterion release during the complexation. MD simulations demonstrate that, when the charge ratio is greater than 1 (as in the case of the G5 dendrimer), the optimal wrapping of DNA is observed. Calculated binding energies of the complexation follow the trend G5 > G4 > G3, in accordance with the experimental data. For a lower-generation dendrimer, such as G3, and, to some extent, for G4 also, we see considerable deformation in the dendrimer structure due to their flexible nature. We have also calculated the various helicoidal parameters of DNA to study the effect of dendrimer binding on the structure of DNA. The B form of the DNA is well preserved in the complex, as is evident from various helical parameters, justifying the use of the PAMAM dendrimer as a suitable delivery vehicle.
在生理 pH 值下,PAMAM 树枝状大分子带正电荷,可有效结合带负电荷的 DNA。目前,人们对理解这种复杂反应非常感兴趣,这既是出于基础研究(作为复杂生物反应的模型)的原因,也是出于实际应用(作为基因传递材料和 DNA 序列检测探针)的原因。在这里,我们通过在水和离子存在的情况下进行原子分子动力学模拟,研究了双链 DNA(dsDNA)与各种代 PAMAM 树枝状大分子(G3-G5)之间的复合反应。我们报告了 DNA 在纳秒时间尺度上的压缩。这是很显著的,因为如此短的 DNA 双链,长度接近 13nm,通常被认为是刚性棒。通过数纳秒长的 MD 模拟,我们观察到了不同代 PAMAM 树枝状大分子在不同电荷比下与 dsDNA 的各种结合模式,并证实了一些先前提出的结合模式。这种结合是由静电相互作用驱动的,树枝状大分子的电荷越大,结合亲和力越强。随着 DNA 缠绕/结合到树枝状大分子上,原本凝聚在 DNA(Na+)和树枝状大分子(Cl-)上的抗衡离子被释放。我们计算了抗衡离子的熵,并表明在复合物形成过程中,由于抗衡离子的释放,熵有了增加。MD 模拟表明,当电荷比大于 1(如 G5 树枝状大分子的情况)时,观察到 DNA 的最佳缠绕。与实验数据一致,复合物的结合能遵循 G5>G4>G3 的趋势。对于低代树枝状大分子,如 G3,并且在某种程度上对于 G4,我们也看到由于其柔性,树枝状大分子结构有相当大的变形。我们还计算了 DNA 的各种螺旋参数,以研究树枝状大分子结合对 DNA 结构的影响。从各种螺旋参数可以明显看出,DNA 的 B 型在复合物中得到了很好的保留,这证明了 PAMAM 树枝状大分子作为合适的递送载体的使用。