Suppr超能文献

一种在匹配观察性研究中具有卓越设计敏感性的新u统计量。

A new u-statistic with superior design sensitivity in matched observational studies.

作者信息

Rosenbaum Paul R

机构信息

Department of Statistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6340, USA.

出版信息

Biometrics. 2011 Sep;67(3):1017-27. doi: 10.1111/j.1541-0420.2010.01535.x. Epub 2010 Dec 22.

Abstract

In an observational or nonrandomized study of treatment effects, a sensitivity analysis indicates the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a naïve analysis that presumes adjustments for observed covariates suffice to remove all bias. The power of sensitivity analysis is the probability that it will reject a false hypothesis about treatment effects allowing for a departure from random assignment of a specified magnitude; in particular, if this specified magnitude is "no departure" then this is the same as the power of a randomization test in a randomized experiment. A new family of u-statistics is proposed that includes Wilcoxon's signed rank statistic but also includes other statistics with substantially higher power when a sensitivity analysis is performed in an observational study. Wilcoxon's statistic has high power to detect small effects in large randomized experiments-that is, it often has good Pitman efficiency-but small effects are invariably sensitive to small unobserved biases. Members of this family of u-statistics that emphasize medium to large effects can have substantially higher power in a sensitivity analysis. For example, in one situation with 250 pair differences that are Normal with expectation 1/2 and variance 1, the power of a sensitivity analysis that uses Wilcoxon's statistic is 0.08 while the power of another member of the family of u-statistics is 0.66. The topic is examined by performing a sensitivity analysis in three observational studies, using an asymptotic measure called the design sensitivity, and by simulating power in finite samples. The three examples are drawn from epidemiology, clinical medicine, and genetic toxicology.

摘要

在一项关于治疗效果的观察性或非随机研究中,敏感性分析表明,若要改变单纯分析(该分析假定对观察到的协变量进行调整足以消除所有偏差)的结论,未测量协变量所导致的偏差幅度需要达到何种程度。敏感性分析的功效是指在允许存在指定幅度的非随机分配情况下,它拒绝关于治疗效果的错误假设的概率;特别地,如果这个指定幅度是“无偏差”,那么这与随机试验中随机化检验的功效相同。本文提出了一个新的u统计量族,其中包括威尔科克森符号秩统计量,但在观察性研究中进行敏感性分析时,还包括其他功效显著更高的统计量。威尔科克森统计量在大型随机试验中检测小效应时具有较高功效——也就是说,它通常具有良好的皮特曼效率——但小效应总是对小的未观察到的偏差很敏感。这个u统计量族中强调中等到大效应的成员在敏感性分析中可以具有显著更高的功效。例如,在一种情况中,有250对差值,服从期望为1/2、方差为1的正态分布,使用威尔科克森统计量的敏感性分析的功效为0.08,而u统计量族的另一个成员的功效为0.66。通过在三项观察性研究中进行敏感性分析、使用一种称为设计敏感性的渐近度量以及在有限样本中模拟功效来研究该主题。这三个例子分别来自流行病学、临床医学和遗传毒理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验