InstaRecon, Inc., 60 Hazelwood Dr., Champaign, IL 61820, USA.
Comput Med Imaging Graph. 2011 Jul;35(5):398-406. doi: 10.1016/j.compmedimag.2010.11.011. Epub 2010 Dec 31.
The expectation maximization algorithm is commonly used to reconstruct images obtained from positron emission tomography sinograms. For images with acceptable signal to noise ratios, iterations are terminated prior to convergence. A new quantitative and reproducible stopping rule is designed and validated on simulations using a Monte-Carlo generated transition matrix with a Poisson noise distribution on the sinogram data. Iterations are terminated at the solution which yields the most probable estimate of the emission densities while matching the sinogram data. It is more computationally efficient and more accurate than the standard stopping rule based on the Pearson's χ(2) test.
期望最大化算法常用于重建正电子发射断层扫描图像。对于信噪比可接受的图像,在收敛之前迭代就会终止。设计了一种新的定量且可重复的停止规则,并在使用具有泊松噪声分布的蒙特卡罗生成转移矩阵对正弦图数据进行模拟的情况下对其进行了验证。迭代在产生发射密度最可能估计值的解处终止,同时匹配正弦图数据。与基于 Pearson χ(2)检验的标准停止规则相比,它更具计算效率,也更准确。