Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
Chemistry. 2011 Jan 3;17(1):312-21. doi: 10.1002/chem.201002340. Epub 2010 Nov 24.
Triazolophanes are used as the venue to compete an aliphatic propylene CH hydrogen-bond donor against an aromatic phenylene one. Longer aliphatic C-H...Cl(-) hydrogen bonds were calculated from the location of the chloride within the propylene-based triazolophane. The gas-phase energetics of chloride binding (ΔG(bind) , ΔH(bind) , ΔS(bind) ) and the configurational entropy (ΔS(config) ) were computed by taking all low-energy conformations into account. Comparison between the phenylene- and propylene-based triazolophanes shows the computed gas-phase free energy of binding decreased from ΔG(bind) =-194 to -182 kJ mol(-1) , respectively, with a modest enthalpy-entropy compensation. These differences were investigated experimentally. An (1) H NMR spectroscopy study on the structure of the propylene triazolophane's 1:1 chloride complex is consistent with a weaker propylene CH hydrogen bond. To quantify the affinity differences between the two triazolophanes in dichloromethane, it was critical to obtain an accurate binding model. Four equilibria were identified. In addition to 1:1 complexation and 2:1 sandwich formation, ion pairing of the tetrabutylammonium chloride salt (TBA(+) ⋅Cl(-) ) and cation pairing of TBA(+) with the 1:1 triazolophane-chloride complex were observed and quantified. Each complex was independently verified by ESI-MS or diffusion NMR spectroscopy. With ion pairing deconvoluted from the chloride-receptor binding, equilibrium constants were determined by using (1) H NMR (500 μM) and UV/Vis (50 μM) spectroscopy titrations. The stabilities of the 1:1 complexes for the phenylene and propylene triazolophanes did not differ within experimental error, ΔG=(-38±2) and (-39±1) kJ mol(-1) , respectively, as verified by an NMR spectroscopy competition experiment. Thus, the aliphatic CH donor only revealed its weaker character when competing with aromatic CH donors within the propylene-based triazolophane.
三唑并[4,5-b]吡啶作为场所,使脂肪族丙烯 CH 氢键供体与芳香族苯环抗衡。通过将氯化物定位在基于丙烯的三唑并[4,5-b]吡啶内,计算出较长的脂肪族 C-H…Cl(-)氢键。通过考虑所有低能构象,计算了氯化物结合的气相能学(ΔG(bind) 、ΔH(bind) 、ΔS(bind) )和构象熵(ΔS(config) )。将苯并[4,5-b]吡啶和丙烯基三唑并[4,5-b]吡啶进行比较,计算得出的气相结合自由能分别从-194 kJ/mol 降至-182 kJ/mol,焓熵补偿适度。这些差异通过实验进行了研究。对丙烯基三唑并[4,5-b]吡啶 1:1 氯化物配合物的结构进行 (1) H NMR 光谱研究,结果表明丙烯 CH 氢键较弱。为了定量研究两种三唑并[4,5-b]吡啶在二氯甲烷中的亲和力差异,获得准确的结合模型至关重要。确定了四个平衡。除了 1:1 络合和 2:1 夹心形成外,还观察到并量化了四丁基氯化铵盐(TBA(+) ⋅Cl(-) )的离子对和 TBA(+)与 1:1 三唑并[4,5-b]吡啶-氯化物配合物的阳离子对。通过 ESI-MS 或扩散 NMR 光谱分别独立验证了每个配合物。通过从氯化物受体结合中解卷积离子对,使用 (1) H NMR(500 μM)和 UV/Vis(50 μM)光谱滴定确定平衡常数。苯并[4,5-b]吡啶和丙烯基三唑并[4,5-b]吡啶的 1:1 配合物的稳定性在实验误差范围内没有差异,分别为-38±2 kJ/mol 和-39±1 kJ/mol,通过 NMR 光谱竞争实验得到验证。因此,当在基于丙烯的三唑并[4,5-b]吡啶中与芳香族 CH 供体竞争时,脂肪族 CH 供体仅显示出其较弱的特性。