Suppr超能文献

基于基因组的一般人群乳腺癌风险预测:基于遗传关联荟萃分析的建模研究。

Genome-based prediction of breast cancer risk in the general population: a modeling study based on meta-analyses of genetic associations.

机构信息

Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.

出版信息

Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1):9-22. doi: 10.1158/1055-9965.EPI-10-0329.

Abstract

BACKGROUND

Genome-wide association studies identified novel breast cancer susceptibility variants that could be used to predict breast cancer in asymptomatic women. This review and modeling study aimed to investigate the current and potential predictive performance of genetic risk models.

METHODS

Genotypes and disease status were simulated for a population of 10,000 women. Genetic risk models were constructed from polymorphisms from meta-analysis including, in separate scenarios, all polymorphisms or statistically significant polymorphisms only. We additionally investigated the magnitude of the odds ratios (OR) for 1 to 100 hypothetical polymorphisms that would be needed to achieve similar discriminative accuracy as available prediction models [modeled range of area under the receiver operating characteristic curve (AUC) 0.70-0.80].

RESULTS

Of the 96 polymorphisms that had been investigated in meta-analyses, 41 showed significant associations. AUC was 0.68 for the genetic risk model based on all 96 polymorphisms and 0.67 for the 41 significant polymorphisms. Addition of 50 additional variants, each with risk allele frequencies of 0.30, requires per-allele ORs of 1.2 to increase this AUC to 0.70, 1.3 to increase AUC to 0.75, and 1.5 to increase AUC to 0.80. To achieve AUC of 0.80, even 100 additional variants would need per-allele ORs of 1.3 to 1.7, depending on risk allele frequencies.

CONCLUSION

The predictive ability of genetic risk models in breast cancer has the potential to become comparable to that of current breast cancer risk models.

IMPACT

Risk prediction based on low susceptibility variants becomes a realistic tool in prevention of nonfamilial breast cancer.

摘要

背景

全基因组关联研究确定了新的乳腺癌易感性变异,可用于预测无症状女性的乳腺癌。本综述和建模研究旨在研究遗传风险模型的当前和潜在预测性能。

方法

对 10000 名女性的人群进行基因型和疾病状态模拟。从荟萃分析中的多态性构建遗传风险模型,分别在单独的情况下,包括所有多态性或仅具有统计学意义的多态性。我们还研究了 1 到 100 个假设多态性的优势比 (OR) 的幅度,这些多态性需要达到与可用预测模型相似的判别准确性 [建模的接收者操作特征曲线下面积 (AUC) 0.70-0.80 范围]。

结果

在荟萃分析中研究的 96 个多态性中,有 41 个显示出显著相关性。基于所有 96 个多态性的遗传风险模型的 AUC 为 0.68,基于 41 个显著多态性的 AUC 为 0.67。添加 50 个额外变体,每个变体的风险等位基因频率为 0.30,需要每个等位基因的 OR 为 1.2 才能将 AUC 提高到 0.70,OR 为 1.3 才能将 AUC 提高到 0.75,OR 为 1.5 才能将 AUC 提高到 0.80。为了达到 AUC 为 0.80,即使添加 100 个额外变体,也需要每个等位基因的 OR 为 1.3 到 1.7,具体取决于风险等位基因频率。

结论

遗传风险模型在乳腺癌中的预测能力有可能与当前的乳腺癌风险模型相当。

意义

基于低易感性变异的风险预测成为预防非家族性乳腺癌的现实工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验