Department of Social Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK.
J Theor Biol. 2011 Apr 7;274(1):58-66. doi: 10.1016/j.jtbi.2010.12.041. Epub 2011 Jan 12.
Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver failure, cirrhosis, hepatocellular carcinoma and death. In developed countries, the majority of HCV infections are transmitted via injecting drug users (IDUs). Despite effective antiviral treatment for HCV, very few active IDUs are treated. Reluctance to treat is partially due to the risk of reinfection. We develop a mathematical model of HCV transmission amongst active IDUs, and examine the potential effect of antiviral treatment. As most mathematical models of interventions utilise a treatment function proportional to the infected population, but many policy implementations set fixed yearly targets for specific numbers treated, we study the effects of using two different treatment terms: annually treating a proportion of infecteds or a fixed number of infecteds. We examine the behaviour of the two treatment models and find different bifurcation behaviours in each case. We calculate analytical solutions for the treatment level needed for disease clearance or control, and observe that achievable levels of treatment can result in control or eradication across a wide range of prevalence levels. Finally, we calculate the sensitivity of the critical treatment threshold to the model parameters, and find that for a given observed prevalence, the injecting duration and infection risk play the most important role in determining the treatment level needed. By contrast, the sensitivity analysis indicates the presence (or absence) of immunity does not alter the treatment threshold. We conclude by discussing the public health implications of this work, and comment on the importance and feasibility of utilising treatment as prevention for HCV spread amongst IDUs.
丙型肝炎病毒(HCV)是一种血液传播的感染,可以导致进行性肝衰竭、肝硬化、肝细胞癌和死亡。在发达国家,大多数 HCV 感染是通过注射吸毒者(IDUs)传播的。尽管有有效的抗 HCV 治疗,但只有极少数的活跃 IDUs 接受治疗。不愿意治疗的部分原因是再次感染的风险。我们建立了一个 HCV 在活跃 IDUs 之间传播的数学模型,并研究了抗病毒治疗的潜在效果。由于大多数干预措施的数学模型都使用了与感染人群成正比的治疗函数,但许多政策实施都为特定数量的治疗设定了固定的年度目标,因此我们研究了使用两种不同治疗方法的效果:每年治疗一定比例的感染者或固定数量的感染者。我们研究了两种治疗模型的行为,发现每种情况下都存在不同的分岔行为。我们计算了清除或控制疾病所需的治疗水平的解析解,并观察到在广泛的流行水平范围内,可实现的治疗水平可以导致控制或根除。最后,我们计算了临界治疗阈值对模型参数的敏感性,发现对于给定的观察流行率,注射持续时间和感染风险在确定所需的治疗水平方面起着最重要的作用。相比之下,敏感性分析表明,免疫的存在(或不存在)不会改变治疗阈值。我们最后讨论了这项工作对公共卫生的影响,并评论了在 IDUs 中利用治疗作为预防 HCV 传播的重要性和可行性。