Suppr超能文献

利用扩口微流控结构对液体弯月面进行操控实现光流型可调微透镜。

Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure.

出版信息

Biomicrofluidics. 2010 Dec 30;4(4):43007. doi: 10.1063/1.3497934.

Abstract

We have designed, demonstrated, and characterized a simple, novel in-plane tunable optofluidic microlens. The microlens is realized by utilizing the interface properties between two different fluids: CaCl(2)solution and air. A constant contact angle of ∼90° is the pivotal factor resulting in the outward bowing and convex shape of the CaCl(2) solution-air interface. The contact angle at the CaCl(2) solution-air interface is maintained by a flared structure in the polydimethylsiloxane channel. The resulting bowing interface, coupled with the refractive index difference between the two fluids, results in effective in-plane focusing. The versatility of such a design is confirmed by characterizing the intensity of a traced beam experimentally and comparing the observed focal points with those obtained via ray-tracing simulations. With the radius of curvature conveniently controlled via fluid injection, the resulting microlens has a readily tunable focal length. This ease of operation, outstandingly low fluid usage, large range tunable focal length, and in-plane focusing ability make this lens suitable for many potential lab-on-a-chip applications such as particle manipulation, flow cytometry, and in-plane optical trapping.

摘要

我们设计、展示并描述了一种简单新颖的平面可调谐光学生透镜。该透镜是通过利用两种不同流体(CaCl2 溶液和空气)之间的界面特性实现的。接触角约为 90°是导致 CaCl2 溶液-空气界面向外弯曲和凸面形状的关键因素。在聚二甲基硅氧烷通道中采用喇叭形结构保持 CaCl2 溶液-空气界面的接触角。弯曲的界面与两种流体之间的折射率差相结合,导致有效的平面聚焦。通过实验表征跟踪光束的强度并将观察到的焦点与光线追踪模拟获得的焦点进行比较,证实了这种设计的多功能性。通过方便地控制曲率半径来控制曲率半径,从而使得到的微透镜具有可方便调节的焦距。这种易于操作、超低的流体用量、大的可调谐焦距范围以及平面聚焦能力使这种透镜适用于许多潜在的微流控芯片应用,如粒子操纵、流式细胞术和平面光阱。

相似文献

2
Hydrodynamically tunable optofluidic cylindrical microlens.
Lab Chip. 2007 Oct;7(10):1303-8. doi: 10.1039/b708863a. Epub 2007 Aug 2.
3
An in-plane optofluidic microchip for focal point control.
Lab Chip. 2013 Oct 7;13(19):3886-92. doi: 10.1039/c3lc50697e.
4
Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
ACS Appl Mater Interfaces. 2023 Mar 8;15(9):11994-12004. doi: 10.1021/acsami.2c20191. Epub 2023 Jan 19.
5
Tunable optofluidic microbubble lens.
Opt Express. 2022 Feb 28;30(5):8317-8329. doi: 10.1364/OE.453555.
6
Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.
Lab Chip. 2010 Sep 21;10(18):2387-93. doi: 10.1039/c005071g. Epub 2010 Aug 10.
7
Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.
Lab Chip. 2009 Jul 21;9(14):2050-8. doi: 10.1039/b822982a. Epub 2009 Apr 15.
8
In situ fabrication of a tunable microlens.
Opt Lett. 2015 Aug 15;40(16):3850-3. doi: 10.1364/OL.40.003850.
10
Optofluidic variable-focus lenses for light manipulation.
Lab Chip. 2012 Oct 7;12(19):3810-5. doi: 10.1039/c2lc40415j.

引用本文的文献

1
Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
Small. 2015 Sep 16;11(35):4423-44. doi: 10.1002/smll.201500970. Epub 2015 Jul 3.
2
A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis.
Anal Chem. 2012 Dec 18;84(24):10745-9. doi: 10.1021/ac302623z. Epub 2012 Nov 27.
3
Optofluidic imaging: now and beyond.
Lab Chip. 2013 Jan 7;13(1):17-24. doi: 10.1039/c2lc90127g. Epub 2012 Nov 9.
4
5
An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing.
Biomicrofluidics. 2012 Jun;6(2):24113-241139. doi: 10.1063/1.3701566. Epub 2012 Apr 20.
6
Preface to special topic: optofluidics.
Biomicrofluidics. 2010 Dec 30;4(4):42901. doi: 10.1063/1.3533774.

本文引用的文献

1
Optimized piranha etching process for SU8-based MEMS and MOEMS construction.
J Micromech Microeng. 2010 Nov 1;20(11):1-8. doi: 10.1088/0960-1317/20/11/115008.
2
Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.
Lab Chip. 2010 Sep 21;10(18):2387-93. doi: 10.1039/c005071g. Epub 2010 Aug 10.
3
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
Lab Chip. 2009 Dec 7;9(23):3354-9. doi: 10.1039/b915113c. Epub 2009 Oct 12.
4
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Lab Chip. 2009 Oct 21;9(20):2890-5. doi: 10.1039/b910595f. Epub 2009 Aug 5.
5
Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.
Lab Chip. 2009 Jul 21;9(14):2050-8. doi: 10.1039/b822982a. Epub 2009 Apr 15.
6
Variable-focus liquid lens.
Opt Express. 2007 May 14;15(10):5931-6. doi: 10.1364/oe.15.005931.
7
Tunable-focus liquid lens controlled using a servo motor.
Opt Express. 2006 Sep 4;14(18):8031-6. doi: 10.1364/oe.14.008031.
8
Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device.
Opt Express. 2005 Oct 31;13(22):9003-13. doi: 10.1364/opex.13.009003.
9
Tunable liquid-filled microlens array integrated with microfluidic network.
Opt Express. 2003 Sep 22;11(19):2370-8. doi: 10.1364/oe.11.002370.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验