Department of Natural Products and Biotechnology, Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Chania, PO Box 85, Chania 73100, Greece.
Microb Cell Fact. 2011 Jan 28;10:4. doi: 10.1186/1475-2859-10-4.
Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway.
S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence) at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R) variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330) in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1) also improved production levels, pointing to an additional means to improve production.
Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.
萜类化合物构成了一大类天然产物,因其作为香料、香精、药物和替代燃料的多种用途而引起商业兴趣。酿酒酵母提供了一个多功能的细胞工厂,因为萜类生物合成的前体是通过甾醇生物合成途径自然合成的。
选择了能够产生高水平固醇的酿酒酵母野生型酵母细胞,作为提高生产能力的目标。开发了可回收的整合盒,使理想的遗传元件(启动子、基因、终止序列)能够在酵母基因组中的任何所需基因座上进行无限顺序整合。该方法应用于酵母甾醇生物合成途径基因 HMG2、ERG20 和 IDI1,导致植物单萜和倍半萜的产量增加了数倍。改良后的菌株具有很强的稳定性,可以在较长时间内维持高萜类化合物的生产水平。在改良的菌株背景下,同时通过质粒驱动共表达 IDI1 和 HMG2(K6R)变体,最大限度地提高了单萜的产量。在改良的酵母细胞中表达来自迷迭香属植物 Salvia fruticosa 和 S. pomifera 的两种萜烯合酶酶(SfCinS1、SpP330),鉴定出了一系列也存在于植物精油中的萜类化合物。与 1- 桉树脑合酶(SfCinS1)共表达假定相互作用蛋白 HSP90 也提高了产量,表明了另一种提高产量的方法。
使用开发的分子工具,生成了具有增加植物萜类化合物生产能力的新型酵母菌株。所采用的方法和菌株的耐用性允许进行连续的改进,以最大限度地提高产量。