Suppr超能文献

一种用于分析高分辨率酶促18O标记质谱的马尔可夫链模型。

A Markov-chain model for the analysis of high-resolution enzymatically 18O-labeled mass spectra.

作者信息

Valkenborg Dirk, Burzykowski Tomasz

机构信息

VITO-Flemish Institute for Technological Research.

出版信息

Stat Appl Genet Mol Biol. 2011;10:Article 1. doi: 10.2202/1544-6115.1538. Epub 2011 Jan 6.

Abstract

The enzymatic 18O-labeling is a useful quantification technique to account for between-spectrum variability of the results of mass spectrometry experiments. One of the important issues related to the use of the technique is the problem of incomplete labeling of peptide molecules, which may result in biased estimates of the relative peptide abundance. In this manuscript, we propose a Markov-chain model, which takes into account the possibility of incomplete labeling in the estimation of the relative abundance from the observed data. This allows for the use of less precise but faster labeling strategies, which should better fit in the high-throughput proteomic framework. Our method does not require extra experimental steps, as proposed in the approaches developed by Mirgorodskaya et al. (2000), López-Ferrer et al. (2006) and Rao et al. (2005), while it includes the model proposed by Eckel-Passow et al. (2006) as a special case. The method estimates information about the isotopic distribution directly from the observed data and is able to account for biases induced by the different sulphur content in peptides as reported by Johnson and Muddiman (2004). The method is integrated in a statistically sound framework and allows for the calculation of the errors on the parameter estimates based on model theory. In this manuscript, we describe the methodology in a technical matter and assess the properties of the algorithm via a thorough simulation study. The method is also tested on a limited dataset; more intense validation and investigation of the operational characteristics is being scheduled.

摘要

酶促18O标记是一种有用的定量技术,可用于解释质谱实验结果的谱间变异性。与该技术使用相关的一个重要问题是肽分子标记不完全的问题,这可能导致相对肽丰度的估计有偏差。在本论文中,我们提出了一种马尔可夫链模型,该模型在根据观测数据估计相对丰度时考虑了标记不完全的可能性。这使得可以使用不太精确但更快的标记策略,这种策略应更适合高通量蛋白质组学框架。我们的方法不需要像Mirgorodskaya等人(2000年)、López-Ferrer等人(2006年)和Rao等人(2005年)所开发的方法那样进行额外的实验步骤,同时它将Eckel-Passow等人(2006年)提出的模型作为一个特例包含在内。该方法直接从观测数据中估计有关同位素分布的信息,并且能够解释如Johnson和Muddiman(2004年)所报道的肽中不同硫含量所引起的偏差。该方法集成在一个统计合理的框架中,并允许根据模型理论计算参数估计的误差。在本论文中,我们从技术角度描述了该方法,并通过全面的模拟研究评估了算法的特性。该方法也在一个有限的数据集上进行了测试;正在计划对其操作特性进行更深入的验证和研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验