Suppr超能文献

在基因关联研究中比较多因素降维和L1惩罚回归以识别基因-基因相互作用

A comparison of multifactor dimensionality reduction and L1-penalized regression to identify gene-gene interactions in genetic association studies.

作者信息

Winham Stacey, Wang Chong, Motsinger-Reif Alison A

机构信息

North Carolina State University, NC, USA.

出版信息

Stat Appl Genet Mol Biol. 2011;10(1):Article 4. doi: 10.2202/1544-6115.1613. Epub 2011 Jan 6.

Abstract

Recently, the amount of high-dimensional data has exploded, creating new analytical challenges for human genetics. Furthermore, much evidence suggests that common complex diseases may be due to complex etiologies such as gene-gene interactions, which are difficult to identify in high-dimensional data using traditional statistical approaches. Data-mining approaches are gaining popularity for variable selection in association studies, and one of the most commonly used methods to evaluate potential gene-gene interactions is Multifactor Dimensionality Reduction (MDR). Additionally, a number of penalized regression techniques, such as Lasso, are gaining popularity within the statistical community and are now being applied to association studies, including extensions for interactions. In this study, we compare the performance of MDR, the traditional lasso with L1 penalty (TL1), and the group lasso for categorical data with group-wise L1 penalty (GL1) to detect gene-gene interactions through a broad range of simulations. We find that each method has both advantages and disadvantages, and relative performance is context dependent. TL1 frequently over-fits, identifying false positive as well as true positive loci. MDR has higher power for epistatic models that exhibit independent main effects; for both Lasso methods, main effects tend to dominate. For purely epistatic models, GL1 has the best performance for lower minor allele frequencies, but MDR performs best for higher frequencies. These results provide guidance of when each approach might be best suited for detecting and characterizing interactions with different mechanisms.

摘要

最近,高维数据量呈爆炸式增长,给人类遗传学带来了新的分析挑战。此外,大量证据表明,常见的复杂疾病可能归因于复杂的病因,如基因-基因相互作用,而使用传统统计方法在高维数据中很难识别这些相互作用。数据挖掘方法在关联研究的变量选择中越来越受欢迎,评估潜在基因-基因相互作用最常用的方法之一是多因素降维法(MDR)。此外,一些惩罚回归技术,如套索回归,在统计学界越来越受欢迎,现在正应用于关联研究,包括相互作用的扩展。在本研究中,我们通过广泛的模拟比较了MDR、具有L1惩罚的传统套索回归(TL1)和具有分组L1惩罚的分类数据分组套索回归(GL1)检测基因-基因相互作用的性能。我们发现每种方法都有优缺点,相对性能取决于具体情况。TL1经常过度拟合,既识别出假阳性位点,也识别出真阳性位点。对于表现出独立主效应的上位性模型,MDR具有更高的功效;对于两种套索回归方法,主效应往往占主导。对于纯上位性模型,在较低的次要等位基因频率下,GL1表现最佳,但在较高频率下,MDR表现最佳。这些结果为每种方法在何时最适合检测和表征具有不同机制的相互作用提供了指导。

相似文献

3
A comparison of internal validation techniques for multifactor dimensionality reduction.
BMC Bioinformatics. 2010 Jul 22;11:394. doi: 10.1186/1471-2105-11-394.
5
Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction.
PLoS One. 2012;7(1):e29594. doi: 10.1371/journal.pone.0029594. Epub 2012 Jan 5.
6
Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise.
Ann Hum Genet. 2011 Jan;75(1):78-89. doi: 10.1111/j.1469-1809.2010.00604.x. Epub 2010 Sep 8.
8
A screening methodology based on Random Forests to improve the detection of gene-gene interactions.
Eur J Hum Genet. 2010 Oct;18(10):1127-32. doi: 10.1038/ejhg.2010.48. Epub 2010 May 12.
10
A roadmap to multifactor dimensionality reduction methods.
Brief Bioinform. 2016 Mar;17(2):293-308. doi: 10.1093/bib/bbv038. Epub 2015 Jun 24.

引用本文的文献

1
Detecting genetic epistasis by differential departure from independence.
Mol Genet Genomics. 2022 Jul;297(4):911-924. doi: 10.1007/s00438-022-01893-3. Epub 2022 May 23.
2
Detecting epistasis in human complex traits.
Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9.
3
Stability SCAD: a powerful approach to detect interactions in large-scale genomic study.
BMC Bioinformatics. 2014 Mar 1;15:62. doi: 10.1186/1471-2105-15-62.
4
Analysis of gene-gene interactions.
Curr Protoc Hum Genet. 2011 Jul;Chapter 1:Unit1.14. doi: 10.1002/0471142905.hg0114s70.

本文引用的文献

1
Identifying main effects and epistatic interactions from large-scale SNP data via adaptive group Lasso.
BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S18. doi: 10.1186/1471-2105-11-S1-S18.
2
Screen and clean: a tool for identifying interactions in genome-wide association studies.
Genet Epidemiol. 2010 Apr;34(3):275-85. doi: 10.1002/gepi.20459.
4
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
5
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.
6
Genome-wide association analysis by lasso penalized logistic regression.
Bioinformatics. 2009 Mar 15;25(6):714-21. doi: 10.1093/bioinformatics/btp041. Epub 2009 Jan 28.
8
A comparison of analytical methods for genetic association studies.
Genet Epidemiol. 2008 Dec;32(8):767-78. doi: 10.1002/gepi.20345.
9
Evaporative cooling feature selection for genotypic data involving interactions.
Bioinformatics. 2007 Aug 15;23(16):2113-20. doi: 10.1093/bioinformatics/btm317. Epub 2007 Jun 22.
10
Penalized logistic regression for detecting gene interactions.
Biostatistics. 2008 Jan;9(1):30-50. doi: 10.1093/biostatistics/kxm010. Epub 2007 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验