Suppr超能文献

对南加州海湾中齿鲸类回声定位声纳脉冲信号的分类。

Classification of echolocation clicks from odontocetes in the Southern California Bight.

机构信息

San Diego State University, Department of Computer Science, 5500 Campanile Drive, San Diego, California 92182-7720, USA.

出版信息

J Acoust Soc Am. 2011 Jan;129(1):467-75. doi: 10.1121/1.3514383.

Abstract

This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.

摘要

本研究提出了一种用于对南加州湾六种齿鲸回声定位点击的分类系统

经视觉确认的宽吻海豚、短喙和长喙真海豚、白腰斑纹海豚、鼠海豚和假定的喙鲸。回声定位点击由倒谱特征向量表示,由高斯混合模型进行分类。设计了一个随机交叉验证实验,以提供与现场部署系统中相似的条件。为了防止匹配条件不当地降低错误率,与单个目击事件相关的回声定位点击从不跨训练和测试数据分割。在实验中将目击事件随机排列后再进行分配。这允许使用不同的训练和测试数据组合,同时将每个目击事件的数据完全保留在训练集或测试集中。该系统在 100 次随机三折交叉验证实验中平均错误率为 22%。六种物种中有四种的平均错误率低于总体平均值,假定的喙鲸点击表现出最佳性能(<2%的错误率)。长喙真海豚和宽吻海豚被证明是最难分类的,平均错误率分别为 53%和 68%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验