Suppr超能文献

超越量子微正则统计。

Beyond quantum microcanonical statistics.

机构信息

Dipartimento di Science Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.

出版信息

J Chem Phys. 2011 Feb 7;134(5):054510. doi: 10.1063/1.3544218.

Abstract

Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schrödinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.

摘要

描述分子系统通常涉及两个不同的理论框架。一方面,根据幺正薛定谔方程,可以确定孤立系统的量子纯态,即波函数,以计算分子性质及其随时间的演化。另一方面,混合态,即统计密度矩阵,是用于描述热平衡的标准形式,这是微正则量子统计所假设的。本文提出了一种依赖于对孤立系统可能波函数的统计分析的替代方法。与经典遍历理论类似,波函数的时间演化决定了与孤立系统相关的相空间中的概率分布。然而,除非引入合适的量子运动常数的概率分布,否则这本身无法在宏观极限下对系统进行明确定义的热力学描述。我们提出了一种可行的形式主义,确保在系统的大尺寸极限下出现热力学函数的典型值,例如内能和熵。这允许在不依赖于量子态的具体实现的情况下识别宏观性质。然后,在不对系统的物理成分和相互作用施加限制的情况下,推导出与平衡热力学一致的物质系统描述。此外,对于子系统的约化密度矩阵,正则统计在所有一般性情况下都得到了恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验