Johnson-Chavarria Eric M, Tanyeri Melikhan, Schroeder Charles M
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL, USA.
J Vis Exp. 2011 Jan 21(47):2517. doi: 10.3791/2517.
The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in concentrated or crowded particle suspensions, which is difficult using alternative force field-based trapping methods. The hydrodynamic trap is user-friendly, straightforward to implement and may be added to existing microfluidic devices to facilitate trapping and long-time analysis of particles. Overall, the hydrodynamic trap is a new platform for confinement, micromanipulation, and observation of particles without surface immobilization and eliminates the need for potentially perturbative optical, magnetic, and electric fields in the free-solution trapping of small particles.
在自由溶液中限制和操纵单个粒子的能力是基础科学和应用科学的一项关键支撑技术。基于光学、磁性、电动和声学技术的粒子捕获方法已在从分子到细胞水平的物理和生物学领域取得了重大进展。在本文中,我们介绍了一种仅基于流体动力流的新型微流控粒子捕获和操纵技术。使用这种方法,我们展示了在水溶液中长时间捕获微米和纳米级粒子。流体动力阱由一个具有交叉狭缝通道几何结构的集成微流控装置组成,其中两个相对的层流汇聚,从而产生一个具有流体驻点(零速度点)的平面拉伸流。在这个装置中,通过对流场的主动控制将粒子限制在阱中心,以保持粒子在流体驻点的位置。通过这种方式,使用用定制的LabVIEW代码实现的反馈控制算法,粒子在自由溶液中被有效地捕获。控制算法包括对微流控装置中的粒子进行图像采集,随后进行粒子跟踪、确定粒子质心位置,并通过使用压力调节器调节施加到片上气动阀的压力来主动调整流体流动。通过这种方式,片上动态计量阀起到调节出口通道中相对流速的作用,从而实现对驻点位置和粒子捕获的精细控制。作为一种粒子捕获方法,基于微流控的流体动力阱具有几个优点。对于任何任意粒子都可以进行流体动力捕获,而对被捕获物体的物理或化学性质没有特定要求。此外,流体动力捕获能够在浓缩或拥挤的粒子悬浮液中限制“单个”目标物体,这使用基于替代力场的捕获方法是困难的。流体动力阱用户友好,易于实现,并且可以添加到现有的微流控装置中,以促进粒子的捕获和长时间分析。总体而言,流体动力阱是一个用于粒子限制、微操纵和观察的新平台,无需表面固定,并且在小粒子的自由溶液捕获中无需潜在的扰动光学、磁性和电场。