Suppr超能文献

探讨 EF 手钙离子结合蛋白的结构与功能。

Relating form and function of EF-hand calcium binding proteins.

机构信息

Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee 37232-8725, USA.

出版信息

Acc Chem Res. 2011 Mar 15;44(3):171-9. doi: 10.1021/ar100110d. Epub 2011 Feb 11.

Abstract

The EF hand, a helix-loop-helix structure, is one of the most common motifs found in animal genomes, and EF-hand Ca(2+)-binding proteins (EFCaBPs) are widely distributed throughout the cell. However, researchers remain confounded by a lack of understanding of how peptide sequences code for specific functions and by uncertainty about the molecular mechanisms that enable EFCaBPs to distinguish among many diverse cellular targets. Such knowledge could define the roles of EFCaBPs in health and disease and ultimately enable control or even design of Ca(2+)-dependent functions in medicine and biotechnology. In this Account, we describe our structural and biochemical research designed to understand the sequence-to-function relationship in EFCaBPs. The first structural goal was to define conformational changes induced by binding Ca(2+), and our group and others established that solution NMR spectroscopy is well suited for this task. We pinpointed residues critical to the differences in Ca(2+) response of calbindin D(9k) and calmodulin (CaM), homologous EFCaBPs from different functional classes, by using direct structure determination with site-directed mutagenesis and protein engineering. Structure combined with biochemistry provided the foundation for identifying the fundamental mechanism of cooperativity in the binding of Ca(2+) ions: this cooperativity provides EFCaBPs with the ability to detect the relatively small changes in concentration that constitute Ca(2+) signals. Using calbindin D(9k) as a model system, studies of the structure and fast time scale dynamics of each of the four ion binding states in a typical EF-hand domain provided direct evidence that site-site communication lowers the free energy cost of reorganization for binding the second ion. Our work has also extended models of how EFCaBPs interact with their cellular targets. We determined the unique dimeric architecture of S100 proteins, a specialized subfamily of EFCaBPs found exclusively in vertebrates. We described the implications for how these proteins transduce signals and went on to characterize interactions with peptide fragments of important cellular targets. Studies of the CaM homolog centrin revealed novel characteristics of its binding of Ca(2+) and its interaction with its cellular target Kar1. These results provided clear examples of how subtle differences in sequence fine-tune EFCaBPs to interact with their specific targets. The structural approach stands at a critical crossroad, shifting in emphasis from descriptive structural biochemistry to integrated biology and medicine. We present our dual-molecular-switch model for Ca(2+) regulation of gating functions of voltage-gated sodium channels in which both CaM and an intrinsic EF-hand domain serve as coupled Ca(2+) sensors. A second example involves novel EFCaBP extracellular function, that is, the role of S100A8/S100A9 heterodimer in the innate immune response to bacterial pathogens. A mechanism for the antimicrobial activity of S100A8/S100A9 was discovered. We describe interactions of S100A8/S100A9 and S100B with the cell surface receptor for advanced glycation end products. Biochemical and structural studies are now uncovering the mechanisms by which EFCaBPs work and are helping to define their biological activities, while simultaneously expanding knowledge of the roles of these proteins in normal cellular physiology and the pathology of disease.

摘要

EF 手是一种螺旋-环-螺旋结构,是动物基因组中最常见的基序之一,EF 手钙结合蛋白(EFCaBPs)广泛分布于细胞中。然而,研究人员仍然对肽序列如何编码特定功能以及 EFCaBPs 如何区分许多不同的细胞靶标所涉及的分子机制感到困惑。这种知识可以定义 EFCaBPs 在健康和疾病中的作用,并最终能够控制甚至设计医学和生物技术中依赖 Ca2+的功能。在本报告中,我们描述了我们的结构和生化研究,旨在了解 EFCaBPs 中的序列-功能关系。第一个结构目标是定义结合 Ca2+时诱导的构象变化,我们的研究小组和其他小组已经确定,使用带有定点突变和蛋白质工程的直接结构测定,溶液 NMR 光谱非常适合这项任务。我们通过使用定点突变和蛋白质工程,确定了钙结合蛋白 D9k(calbindin D9k)和钙调蛋白(CaM)同源 EFCaBPs 之间 Ca2+响应差异的关键残基,这两种蛋白来自不同的功能类别。结构与生物化学相结合,为识别 Ca2+离子结合的协同作用的基本机制提供了基础:这种协同作用使 EFCaBPs 能够检测到构成 Ca2+信号的相对较小的浓度变化。使用 calbindin D9k 作为模型系统,对典型 EF 手结构域中四个离子结合状态的结构和快速时间尺度动力学的研究,直接证明了位点间通讯降低了结合第二个离子时的重组自由能成本。我们的工作还扩展了 EFCaBPs 与其细胞靶标相互作用的模型。我们确定了 S100 蛋白的独特二聚体结构,这是一种仅在脊椎动物中发现的特殊 EFCaBP 亚家族。我们描述了这些蛋白如何传递信号的含义,并继续描述它们与重要细胞靶标的肽片段的相互作用。对钙调蛋白同源物 centrin 的研究揭示了其结合 Ca2+和与细胞靶标 Kar1 相互作用的新特征。这些结果为序列的细微差异如何微调 EFCaBPs 以与其特定靶标相互作用提供了明确的示例。结构方法正处于一个关键的十字路口,从描述性结构生物学转向综合生物学和医学。我们提出了我们的双分子开关模型,用于 Ca2+调节电压门控钠离子通道的门控功能,其中钙调蛋白和内在的 EF 手结构域都作为耦合的 Ca2+传感器。第二个例子涉及到新型 EFCaBP 细胞外功能,即 S100A8/S100A9 异二聚体在细菌病原体的先天免疫反应中的作用。发现了 S100A8/S100A9 的抗菌活性机制。我们描述了 S100A8/S100A9 和 S100B 与细胞表面晚期糖基化终产物受体的相互作用。生化和结构研究现在正在揭示 EFCaBPs 发挥作用的机制,并有助于定义它们的生物学活性,同时扩展了这些蛋白质在正常细胞生理学和疾病病理学中的作用的知识。

相似文献

1
Relating form and function of EF-hand calcium binding proteins.
Acc Chem Res. 2011 Mar 15;44(3):171-9. doi: 10.1021/ar100110d. Epub 2011 Feb 11.
2
The EF-hand domain: a globally cooperative structural unit.
Protein Sci. 2002 Feb;11(2):198-205. doi: 10.1110/ps.33302.
3
Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5.
J Biol Chem. 2009 Mar 6;284(10):6436-45. doi: 10.1074/jbc.M807747200. Epub 2008 Dec 11.
4
Crystal structures of Ca-calmodulin bound to Na C-terminal regions suggest role for EF-hand domain in binding and inactivation.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10763-10772. doi: 10.1073/pnas.1818618116. Epub 2019 May 9.
5
Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
Biochemistry. 1996 Sep 10;35(36):11577-88. doi: 10.1021/bi9612226.
6
A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form.
Structure. 1998 Feb 15;6(2):211-22. doi: 10.1016/s0969-2126(98)00022-7.
9
Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin.
J Biol Chem. 2009 Mar 27;284(13):8846-54. doi: 10.1074/jbc.M806871200. Epub 2009 Jan 26.
10
Ca-saturated calmodulin binds tightly to the N-terminal domain of A-type fibroblast growth factor homologous factors.
J Biol Chem. 2021 Jan-Jun;296:100458. doi: 10.1016/j.jbc.2021.100458. Epub 2021 Feb 24.

引用本文的文献

1
Fast kinetics of photoprotein emitting species.
Sci Rep. 2025 Aug 27;15(1):31577. doi: 10.1038/s41598-025-17152-5.
2
Calcium Unified: Understanding How Calcium's Atomic Properties Impact Human Health.
Cells. 2025 Jul 11;14(14):1066. doi: 10.3390/cells14141066.
3
The Multifaceted Role of Calcium Signaling in Regulated Necrosis.
Biomolecules. 2025 Jun 11;15(6):854. doi: 10.3390/biom15060854.
5
The apo LETM1 F-EF-hand adopts a closed conformation that underlies a multi-modal sensory role in mitochondria.
FEBS Lett. 2025 Apr;599(7):971-988. doi: 10.1002/1873-3468.70006. Epub 2025 Feb 10.
6
Lanthanide binding peptide surfactants at air-aqueous interfaces for interfacial separation of rare earth elements.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2411763121. doi: 10.1073/pnas.2411763121. Epub 2024 Dec 19.
9
Identifying Key Binding Interactions Between the Cardiac L-Type Calcium Channel and Calmodulin Using Molecular Dynamics Simulations.
J Phys Chem B. 2024 Jun 27;128(25):6097-6111. doi: 10.1021/acs.jpcb.4c02251. Epub 2024 Jun 13.
10
Multifaceted roles of CCAR family proteins in the DNA damage response and cancer.
Exp Mol Med. 2024 Feb;56(1):59-65. doi: 10.1038/s12276-023-01139-1. Epub 2024 Jan 4.

本文引用的文献

1
Structural basis for ligand recognition and activation of RAGE.
Structure. 2010 Oct 13;18(10):1342-52. doi: 10.1016/j.str.2010.05.017.
2
Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin.
J Biol Chem. 2009 Mar 27;284(13):8846-54. doi: 10.1074/jbc.M806871200. Epub 2009 Jan 26.
3
Binding of S100 proteins to RAGE: an update.
Biochim Biophys Acta. 2009 Jun;1793(6):993-1007. doi: 10.1016/j.bbamcr.2008.11.016. Epub 2008 Dec 11.
4
Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5.
J Biol Chem. 2009 Mar 6;284(10):6436-45. doi: 10.1074/jbc.M807747200. Epub 2008 Dec 11.
6
The AGE/RAGE axis in diabetes-accelerated atherosclerosis.
Clin Exp Pharmacol Physiol. 2008 Mar;35(3):329-34. doi: 10.1111/j.1440-1681.2007.04875.x.
7
Metal chelation and inhibition of bacterial growth in tissue abscesses.
Science. 2008 Feb 15;319(5865):962-5. doi: 10.1126/science.1152449.
8
Pathologies involving the S100 proteins and RAGE.
Subcell Biochem. 2007;45:93-138. doi: 10.1007/978-1-4020-6191-2_5.
9
The roles of sodium channels in nociception: Implications for mechanisms of pain.
Pain. 2007 Oct;131(3):243-257. doi: 10.1016/j.pain.2007.07.026. Epub 2007 Sep 4.
10
ENCODE and our very busy genome.
Nat Genet. 2007 Jul;39(7):817-8. doi: 10.1038/ng0707-817.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验