Department of Mathematics, California State University, Los Angeles, CA 90032, USA.
Neural Netw. 2011 May;24(4):345-59. doi: 10.1016/j.neunet.2010.12.007. Epub 2011 Jan 20.
One of the now standard techniques in semi-supervised learning is to think of a high dimensional data as a subset of a low dimensional manifold embedded in a high dimensional ambient space, and to use projections of the data on eigenspaces of a diffusion map. This paper is motivated by a recent work of Coifman and Maggioni on diffusion wavelets to accomplish such projections approximately using iterates of the heat kernel. In greater generality, we consider a quasi-metric measure space X (in place of the manifold), and a very general operator T defined on the class of integrable functions on X (in place of the diffusion map). We develop a representation of functions on X in terms of linear combinations of iterates of T. Our construction obviates the need to compute the eigenvalues and eigenfunctions of the operator. In addition, the local smoothness of a function f is characterized by the local norm behavior of the terms in our representation of f. This property is similar to that of the classical wavelet representations. Although the operator T utilizes the values of the target function on the entire space, this ability results in automatic "feature detection", leading to a parsimonious representation of the target function. In the case when X is a smooth compact manifold (without boundary), our theory allows T to be any operator that commutes with the heat operator, subject to certain conditions on its eigenvalues. In particular, T can be chosen to be the heat operator itself, or a Green's operator corresponding to a suitable pseudo-differential operator.
半监督学习中的一种标准技术是将高维数据视为低维流形的子集,该流形嵌入在高维环境空间中,并使用数据在扩散映射的本征空间上的投影。本文的动机来自 Coifman 和 Maggioni 最近关于扩散小波的工作,该工作使用热核的迭代来近似完成这些投影。在更一般的情况下,我们考虑拟度量测度空间 X(代替流形)和在 X 上的可积函数类上定义的非常一般的算子 T(代替扩散映射)。我们以 T 的迭代的线性组合的形式为 X 上的函数开发了一种表示。我们的构造避免了计算算子的特征值和特征函数的需要。此外,函数的局部平滑度由我们对 f 的表示的项的局部范数行为来刻画。该属性类似于经典小波表示。尽管算子 T 利用了整个空间上的目标函数的值,但这种能力导致了自动的“特征检测”,从而对目标函数进行了简洁的表示。在 X 是光滑紧流形(无边界)的情况下,我们的理论允许 T 是与热算子 commute 的任何算子,但对其特征值有某些条件。特别地,T 可以选择为热算子本身,或者是对应于合适的拟微分算子的格林算子。