Department of Neuroscience and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA Montreal Neurological Institute, Montreal, Quebec, Canada.
Pain. 2011 Apr;152(4):924-935. doi: 10.1016/j.pain.2011.01.017.
Neuropathic pain is associated with reorganization of spinal synaptic circuits, implying that adhesion proteins that normally build and modify synapses must be involved. The adhesion proteins E- and N-cadherin delineate different synapses furnished by nociceptive primary afferents, but dynamic aspects of cadherin localization in relationship to onset, maintenance or reversibility of neuropathic pain are uncharacterized. Here, we find very different responses of these cadherins to L5 spinal nerve transection (SNT)-induced mechanical allodynia and to intrathecal glial derived neurotrophic factor (GDNF), which has potent analgesic effects in this pain model. In L5, E-cadherin is rapidly eliminated in patches within lamina IIi contemporaneously with the onset of mechanical allodynia. Intrathecal GDNF in conjunction with, or at 7 days after, L5 SNT prevents or reverses both the loss of E-cadherin and abnormal pain sensation. In contrast, N-cadherin undergoes a delayed and transient increase uniformly across lamina I-II that is insensitive to GDNF. Some N-cadherin-labeled profiles codistribute with GAP-43, suggesting a role in axon sprouting. Patterns of immunolabeling for GDNF receptor components GFRα1, NCAM, and RET after L5 SNT suggest that GFRα1 and NCAM are the principal receptors operative in this model. In addition, GFRα1 codistributes with E-cadherin, but not N-cadherin, profiles. Together, these data indicate strikingly divergent patterns of temporal and molecular regulation of different cadherins at distinct nociceptive circuits in response to spinal nerve injury, suggesting that the two cadherins and the circuits with which they are affiliated participate in different aspects of synaptic and circuit reorganization associated with neuropathic pain.
神经病理性疼痛与脊髓突触回路的重组有关,这意味着正常构建和修饰突触的黏附蛋白必然涉及其中。黏附蛋白 E-和 N-钙黏蛋白描绘了由伤害性初级传入纤维提供的不同突触,但与神经病理性疼痛的发作、维持或逆转相关的钙黏蛋白定位的动态方面尚未确定。在这里,我们发现这两种钙黏蛋白对 L5 脊神经横断(SNT)诱导的机械性痛觉过敏和鞘内胶质衍生神经营养因子(GDNF)的反应非常不同,GDNF 在这种疼痛模型中具有很强的镇痛作用。在 L5,E-钙黏蛋白在机械性痛觉过敏发作的同时,迅速在 IIi 层内的斑块中被消除。鞘内 GDNF 与 L5 SNT 联合使用,或在 L5 SNT 后 7 天使用,可预防或逆转 E-钙黏蛋白的丢失和异常疼痛感觉。相比之下,N-钙黏蛋白在 I-II 层中均匀地经历延迟和短暂的增加,对 GDNF 不敏感。一些 N-钙黏蛋白标记的形态与 GAP-43 共分布,提示其在轴突发芽中起作用。L5 SNT 后 GDNF 受体成分 GFRα1、NCAM 和 RET 的免疫标记模式表明,在该模型中 GFRα1 和 NCAM 是主要的作用受体。此外,GFRα1 与 E-钙黏蛋白共分布,但与 N-钙黏蛋白不共分布。这些数据表明,在不同的伤害性回路中,不同钙黏蛋白的时间和分子调节呈现出显著不同的模式,这表明这两种钙黏蛋白和与之相关的回路参与了与神经病理性疼痛相关的突触和回路重组的不同方面。