Suppr超能文献

随机模拟的尖峰分类。

Spike sorting by stochastic simulation.

机构信息

Glaizer Groupe, 92240 Malakoff, France.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):249-59. doi: 10.1109/TNSRE.2011.2112780. Epub 2011 Feb 10.

Abstract

The decomposition of multiunit signals consists of the restoration of spike trains and action potentials in neural or muscular recordings. Because of the complexity of automatic decomposition, semiautomatic procedures are sometimes chosen. The main difficulty in automatic decomposition is the resolution of temporally overlapped potentials. In a previous study , we proposed a Bayesian model coupled with a maximum a posteriori (MAP) estimator for fully automatic decomposition of multiunit recordings and we showed applications to intramuscular EMG signals. In this study, we propose a more complex signal model that includes the variability in amplitude of each unit potential. Moreover, we propose the Markov Chain Monte Carlo (MCMC) simulation and a Bayesian minimum mean square error (MMSE) estimator by averaging on samples that converge in distribution to the joint posterior law. We prove the convergence property of this approach mathematically and we test the method representatively on intramuscular multiunit recordings. The results showed that its average accuracy in spike identification is greater than 90% for intramuscular signals with up to 8 concurrently active units. In addition to intramuscular signals, the method can be applied for spike sorting of other types of multiunit recordings.

摘要

多单元信号的分解包括在神经或肌肉记录中恢复尖峰序列和动作电位。由于自动分解的复杂性,有时会选择半自动程序。自动分解的主要困难在于解决时间上重叠的电位。在之前的一项研究中,我们提出了一种贝叶斯模型,该模型与最大后验(MAP)估计器相结合,用于多单元记录的全自动分解,并展示了对肌内 EMG 信号的应用。在这项研究中,我们提出了一个更复杂的信号模型,该模型包括每个单元电位幅度的可变性。此外,我们提出了马尔可夫链蒙特卡罗(MCMC)模拟和贝叶斯最小均方误差(MMSE)估计器,通过对分布收敛到联合后验律的样本进行平均。我们从数学上证明了这种方法的收敛性,并在肌内多单元记录上对该方法进行了代表性测试。结果表明,对于同时有多达 8 个活动单元的肌内信号,其在尖峰识别方面的平均准确率大于 90%。除了肌内信号,该方法还可以应用于其他类型的多单元记录的尖峰分类。

相似文献

1
Spike sorting by stochastic simulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):249-59. doi: 10.1109/TNSRE.2011.2112780. Epub 2011 Feb 10.
2
Unsupervised Bayesian decomposition of multiunit EMG recordings using Tabu search.
IEEE Trans Biomed Eng. 2010 Mar;57(3):561-71. doi: 10.1109/TBME.2009.2022277. Epub 2009 May 19.
3
Sequential decoding of intramuscular EMG signals via estimation of a Markov model.
IEEE Trans Neural Syst Rehabil Eng. 2014 Sep;22(5):1030-40. doi: 10.1109/TNSRE.2014.2316547. Epub 2014 Apr 11.
4
Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
Neural Comput. 2011 Jan;23(1):46-96. doi: 10.1162/NECO_a_00059. Epub 2010 Oct 21.
5
On-Line Recursive Decomposition of Intramuscular EMG Signals Using GPU-Implemented Bayesian Filtering.
IEEE Trans Biomed Eng. 2020 Jun;67(6):1806-1818. doi: 10.1109/TBME.2019.2948397. Epub 2019 Dec 6.
6
Recursive Decomposition of Electromyographic Signals With a Varying Number of Active Sources: Bayesian Modeling and Filtering.
IEEE Trans Biomed Eng. 2020 Feb;67(2):428-440. doi: 10.1109/TBME.2019.2914966. Epub 2019 May 6.
8
Highly Accurate Real-Time Decomposition of Single Channel Intramuscular EMG.
IEEE Trans Biomed Eng. 2022 Feb;69(2):746-757. doi: 10.1109/TBME.2021.3104621. Epub 2022 Jan 20.
10
A novel method for automated EMG decomposition and MUAP classification.
Artif Intell Med. 2006 May;37(1):55-64. doi: 10.1016/j.artmed.2005.09.002. Epub 2005 Dec 27.

引用本文的文献

1
Physical principles for scalable neural recording.
Front Comput Neurosci. 2013 Oct 21;7:137. doi: 10.3389/fncom.2013.00137. eCollection 2013.
2
A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
PLoS One. 2013 May 3;8(5):e62123. doi: 10.1371/journal.pone.0062123. Print 2013.
3
Detection of epileptic activity in fMRI without recording the EEG.
Neuroimage. 2012 Apr 15;60(3):1867-79. doi: 10.1016/j.neuroimage.2011.12.083. Epub 2012 Jan 28.

本文引用的文献

1
2
Unsupervised Bayesian decomposition of multiunit EMG recordings using Tabu search.
IEEE Trans Biomed Eng. 2010 Mar;57(3):561-71. doi: 10.1109/TBME.2009.2022277. Epub 2009 May 19.
3
Estimating motor unit discharge patterns from high-density surface electromyogram.
Clin Neurophysiol. 2009 Mar;120(3):551-62. doi: 10.1016/j.clinph.2008.10.160. Epub 2009 Feb 8.
4
A nonparametric Bayesian alternative to spike sorting.
J Neurosci Methods. 2008 Aug 15;173(1):1-12. doi: 10.1016/j.jneumeth.2008.04.030. Epub 2008 May 16.
6
Decomposition of surface EMG signals.
J Neurophysiol. 2006 Sep;96(3):1646-57. doi: 10.1152/jn.00009.2006.
7
EMGLAB: an interactive EMG decomposition program.
J Neurosci Methods. 2005 Dec 15;149(2):121-33. doi: 10.1016/j.jneumeth.2005.05.015. Epub 2005 Jul 18.
8
Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo.
Neuroscience. 2005;134(1):301-15. doi: 10.1016/j.neuroscience.2005.03.031.
9
Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle.
J Neurophysiol. 2005 May;93(5):2449-59. doi: 10.1152/jn.01122.2004. Epub 2004 Dec 22.
10
Correlation-based decomposition of surface electromyograms at low contraction forces.
Med Biol Eng Comput. 2004 Jul;42(4):487-95. doi: 10.1007/BF02350989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验