Glaizer Groupe, 92240 Malakoff, France.
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):249-59. doi: 10.1109/TNSRE.2011.2112780. Epub 2011 Feb 10.
The decomposition of multiunit signals consists of the restoration of spike trains and action potentials in neural or muscular recordings. Because of the complexity of automatic decomposition, semiautomatic procedures are sometimes chosen. The main difficulty in automatic decomposition is the resolution of temporally overlapped potentials. In a previous study , we proposed a Bayesian model coupled with a maximum a posteriori (MAP) estimator for fully automatic decomposition of multiunit recordings and we showed applications to intramuscular EMG signals. In this study, we propose a more complex signal model that includes the variability in amplitude of each unit potential. Moreover, we propose the Markov Chain Monte Carlo (MCMC) simulation and a Bayesian minimum mean square error (MMSE) estimator by averaging on samples that converge in distribution to the joint posterior law. We prove the convergence property of this approach mathematically and we test the method representatively on intramuscular multiunit recordings. The results showed that its average accuracy in spike identification is greater than 90% for intramuscular signals with up to 8 concurrently active units. In addition to intramuscular signals, the method can be applied for spike sorting of other types of multiunit recordings.
多单元信号的分解包括在神经或肌肉记录中恢复尖峰序列和动作电位。由于自动分解的复杂性,有时会选择半自动程序。自动分解的主要困难在于解决时间上重叠的电位。在之前的一项研究中,我们提出了一种贝叶斯模型,该模型与最大后验(MAP)估计器相结合,用于多单元记录的全自动分解,并展示了对肌内 EMG 信号的应用。在这项研究中,我们提出了一个更复杂的信号模型,该模型包括每个单元电位幅度的可变性。此外,我们提出了马尔可夫链蒙特卡罗(MCMC)模拟和贝叶斯最小均方误差(MMSE)估计器,通过对分布收敛到联合后验律的样本进行平均。我们从数学上证明了这种方法的收敛性,并在肌内多单元记录上对该方法进行了代表性测试。结果表明,对于同时有多达 8 个活动单元的肌内信号,其在尖峰识别方面的平均准确率大于 90%。除了肌内信号,该方法还可以应用于其他类型的多单元记录的尖峰分类。