RIFCON GmbH, Breslauer Str. 7, D-69493 Hirschberg, Germany.
Food Chem Toxicol. 2011 May;49(5):1160-6. doi: 10.1016/j.fct.2011.02.009. Epub 2011 Feb 17.
Probabilistic methods, in particular Monte Carlo methods, have become widely used in assessment of dietary risks from plant protection products. However, if the critical exposure occurs rarely, estimating its probability with commonly used Monte Carlo approaches can require an unrealistically big number of iterations. A simple method proposed in this paper, referred to as food combination analysis (FCA), finds out subsets of input values necessary for occurrence of a critical exposure event. In particular, for a critical event to occur consumption of a certain combination of contaminated foods could be required. Sometimes by finding the probability that such a food combination is consumed one could directly get an acceptable estimate of the risk, without Monte Carlo simulations. The method performs especially well if available data sets of consumed amounts of foods and residue concentrations of a chemical contain a large fraction of zeros. Based on a literature example, it is shown that the probability of the critical exposure estimated with the FCA could be more than 10 times lower than the estimate of a Monte Carlo approach with 50,000 iterations. The present approach also provides a platform for adaptation and development of more sophisticated methods to estimate low dietary risks.
概率方法,特别是蒙特卡罗方法,已广泛应用于评估植物保护产品的饮食风险。然而,如果关键暴露发生的频率很低,使用常用的蒙特卡罗方法来估计其概率可能需要不切实际的大量迭代。本文提出了一种简单的方法,称为食物组合分析(FCA),可以找到发生关键暴露事件所需的输入值子集。具体来说,可能需要消费一定组合的污染食物才能发生关键事件。有时,通过计算这种食物组合被消费的概率,就可以直接得到风险的可接受估计,而无需进行蒙特卡罗模拟。如果食用量和化学物质残留浓度的可用数据集包含大量零值,则该方法的效果尤其好。基于文献实例,表明使用 FCA 估计的关键暴露概率可能比使用 50,000 次迭代的蒙特卡罗方法估计的概率低 10 倍以上。本方法还为估计低饮食风险的更复杂方法的适应和发展提供了平台。