Suppr超能文献

人类上皮性癌中常见的微小RNA-信使核糖核酸调控生物模块的鉴定

Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers.

作者信息

Yang Xinan, Lee Younghee, Fan Hong, Sun Xiao, Lussier Yves A

机构信息

State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,China.

出版信息

Chin Sci Bull. 2010 Nov;55(31):3576-3589. doi: 10.1007/s11434-010-4051-1.

Abstract

The complex regulatory network between microRNAs and gene expression remains unclear domain of active research. We proposed to address in part this complex regulation with a novel approach for the genome-wide identification of biomodules derived from paired microRNA and mRNA profiles, which could reveal correlations associated with a complex network of de-regulation in human cancer. Two published expression datasets for 68 samples with 11 distinct types of epithelial cancers and 21 samples of normal tissues were used, containing microRNA expression (Lu et al. Nature Letters 2005) and gene expression (Ramaswarmy et al. PNAS 2001) profiles, respectively. As results, the microRNA expression used jointly with mRNA expression can provide better classifiers of epithelial cancers against normal epithelial tissue than either dataset alone (p=1×10(-10), F-Test). We identified a combination of six microRNA-mRNA biomodules that optimally classified epithelial cancers from normal epithelial tissue (total accuracy = 93.3%; 95% confidence intervals: 86% - 97%), using penalized logistic regression (PLR) algorithm and three-fold cross-validation. Three of these biomodules are individually sufficient to cluster epithelial cancers from normal tissue using mutual information distance. The biomodules contain 10 distinct microRNAs and 98 distinct genes, including well known tumor markers such as miR-15a, miR-30e, IRAK1, TGFBR2, DUSP16, CDC25B and PDCD2. In addition, there is a significant enrichment (Fisher's exact test p=3×10(-10)) between putative microRNA-target gene pairs reported in five microRNA target databases and the inversely correlated micro-RNA-mRNA pairs in the biomodules. Further, microRNAs and genes in the biomodules were found in abstracts mentioning epithelial cancers (Fisher Exact Test, unadjusted p<0.05). Taken together, these results strongly suggest that the discovered microRNA-mRNA biomodules correspond to regulatory mechanisms common to human epithelial cancer samples. In conclusion, we developed and evaluated a novel comprehensive method to systematically identify, on a genome scale, microRNA-mRNA expression biomodules common to distinct cancers of the same tissue. These biomodules also comprise novel microRNA and genes as well as an imputed regulatory network, which may accelerate the work of cancer biologists as large regulatory maps of cancers can be drawn efficiently for hypothesis generation.

摘要

微小RNA与基因表达之间复杂的调控网络仍是活跃研究的未知领域。我们建议用一种新方法来部分解决这种复杂调控,该方法用于全基因组范围内识别源自配对微小RNA和信使核糖核酸(mRNA)谱的生物模块,这可能揭示与人类癌症中复杂失调网络相关的关联。我们使用了两个已发表的表达数据集,一个包含68个样本,涵盖11种不同类型的上皮癌,另一个包含21个正常组织样本,分别包含微小RNA表达(Lu等人,《自然通讯》2005年)和基因表达(Ramaswarmy等人,《美国国家科学院院刊》2001年)谱。结果表明,与单独使用任一数据集相比,联合使用微小RNA表达和mRNA表达能更好地将上皮癌与正常上皮组织区分开来(p = 1×10⁻¹⁰,F检验)。我们使用惩罚逻辑回归(PLR)算法和三倍交叉验证,确定了六个微小RNA - mRNA生物模块的组合,该组合能最佳地将上皮癌与正常上皮组织区分开(总准确率 = 93.3%;95%置信区间:86% - 97%)。其中三个生物模块单独使用互信息距离就足以将上皮癌与正常组织聚类。这些生物模块包含10种不同的微小RNA和98种不同的基因,包括知名的肿瘤标志物,如miR - 15a、miR - 30e、IRAK1、TGFBR2、DUSP16、CDC²⁵B和PDCD2。此外,在五个微小RNA靶标数据库中报告的假定微小RNA - 靶基因对与生物模块中呈负相关的微小RNA - mRNA对之间存在显著富集(Fisher精确检验p = 3×10⁻¹⁰)。此外,在提及上皮癌的摘要中发现了生物模块中的微小RNA和基因(Fisher精确检验,未校正p < 0.05)。综上所述,这些结果强烈表明所发现的微小RNA - mRNA生物模块对应于人类上皮癌样本共有的调控机制。总之,我们开发并评估了一种新的综合方法,用于在基因组规模上系统地识别同一组织不同癌症共有的微小RNA - mRNA表达生物模块。这些生物模块还包含新的微小RNA和基因以及一个推断的调控网络,这可能加速癌症生物学家的工作,因为可以高效绘制癌症的大型调控图谱以生成假设。

相似文献

1
Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers.
Chin Sci Bull. 2010 Nov;55(31):3576-3589. doi: 10.1007/s11434-010-4051-1.
2
Identifying microRNA/mRNA dysregulations in ovarian cancer.
BMC Res Notes. 2012 Mar 27;5:164. doi: 10.1186/1756-0500-5-164.
4
Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis.
PLoS Comput Biol. 2010 Apr 1;6(4):e1000730. doi: 10.1371/journal.pcbi.1000730.
6
Identifying microRNA-mRNA regulatory network in gemcitabine-resistant cells derived from human pancreatic cancer cells.
Tumour Biol. 2015 Jun;36(6):4525-34. doi: 10.1007/s13277-015-3097-8. Epub 2015 Feb 27.
7
Systems analysis identifies miR-29b regulation of invasiveness in melanoma.
Mol Cancer. 2016 Nov 16;15(1):72. doi: 10.1186/s12943-016-0554-y.
8
Identification of Potential MicroRNA-MRNA Regulatory Relationship Pairs in Irritable Bowel Syndrome with Diarrhea.
Comb Chem High Throughput Screen. 2023;26(8):1618-1628. doi: 10.2174/1386207326666230109143325.
9
Global analysis of miRNA-mRNA regulation pair in bladder cancer.
World J Surg Oncol. 2022 Mar 3;20(1):66. doi: 10.1186/s12957-022-02538-w.

本文引用的文献

1
Discovery of functional miRNA-mRNA regulatory modules with computational methods.
J Biomed Inform. 2009 Aug;42(4):685-91. doi: 10.1016/j.jbi.2009.01.005. Epub 2009 Jan 30.
2
Compositional data analysis for elemental data in forensic science.
Forensic Sci Int. 2009 Jul 1;188(1-3):81-90. doi: 10.1016/j.forsciint.2009.03.018. Epub 2009 May 2.
3
MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma.
Br J Cancer. 2009 Mar 24;100(6):1002-11. doi: 10.1038/sj.bjc.6604948.
4
MicroRNA-mediated regulation of Ubc9 expression in cancer cells.
Clin Cancer Res. 2009 Mar 1;15(5):1550-7. doi: 10.1158/1078-0432.CCR-08-0820. Epub 2009 Feb 17.
5
MicroRNAs: target recognition and regulatory functions.
Cell. 2009 Jan 23;136(2):215-33. doi: 10.1016/j.cell.2009.01.002.
6
Role of miR-143 targeting KRAS in colorectal tumorigenesis.
Oncogene. 2009 Mar 12;28(10):1385-92. doi: 10.1038/onc.2008.474. Epub 2009 Jan 12.
7
Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance.
Bioinformatics. 2009 Feb 15;25(4):430-4. doi: 10.1093/bioinformatics/btn646. Epub 2008 Dec 17.
8
Finding microRNA regulatory modules in human genome using rule induction.
BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S5. doi: 10.1186/1471-2105-9-S12-S5.
9
MiRTif: a support vector machine-based microRNA target interaction filter.
BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S4. doi: 10.1186/1471-2105-9-S12-S4.
10
MicroRNA target prediction by expression analysis of host genes.
Genome Res. 2009 Mar;19(3):481-90. doi: 10.1101/gr.084129.108. Epub 2008 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验