Department of Materials, University of Oxford, Oxford, UK.
J Phys Condens Matter. 2011 Mar 23;23(11):116001. doi: 10.1088/0953-8984/23/11/116001. Epub 2011 Feb 28.
Rare earth Laves phase (RFe(2)) superlattice structures grown at different temperatures are studied using x-ray reflectivity (XRR), x-ray diffraction, and transmission electron microscopy. The optimized molecular beam epitaxy growth condition is matched with the XRR simulation, showing minimum diffusion/roughness at the interfaces. Electron microscopy characterization reveals that the epitaxial growth develops from initial 3D islands to a high quality superlattice structure. Under this optimum growth condition, chemical analysis by electron energy loss spectroscopy with high spatial resolution is used to study the interface. The analysis shows that the interface roughness is between 0.6 and 0.8 nm and there is no significant interlayer diffusion. The locally sharp interface found in this work explains the success of simple structural models in predicting the magnetic reversal behavior of Laves exchange spring superlattices.
采用 X 射线反射率(XRR)、X 射线衍射和透射电子显微镜研究了在不同温度下生长的稀土 Laves 相(RFe(2))超晶格结构。优化的分子束外延生长条件与 XRR 模拟相匹配,显示出界面处的最小扩散/粗糙度。电子显微镜表征表明,外延生长从初始的 3D 岛发展为高质量的超晶格结构。在这种最佳生长条件下,利用具有高空间分辨率的电子能量损失光谱化学分析研究了界面。分析表明,界面粗糙度在 0.6nm 到 0.8nm 之间,没有明显的层间扩散。本工作中发现的局部陡峭界面解释了简单结构模型在预测 Laves 交换弹簧超晶格的磁反转行为方面的成功。