Misra Navodit, Blelloch Guy, Ravi R, Schwartz Russell
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
J Comput Biol. 2011 Mar;18(3):445-57. doi: 10.1089/cmb.2010.0254.
Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. We further show on a collection of less difficult problem instances that the ILP method leads to large reductions in average-case run times relative to leading heuristics on moderately hard problems. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.
系统发育树的准确重建仍然是进化生物学中的一个关键挑战。该问题在生物学上最合理的大多数公式在形式上都是NP难的,没有已知的有效解决方案。实践中的标准是快速启发式方法,经验表明这些方法总体上效果很好,但可能产生与最优解相差甚远的结果。实用的精确方法虽然最坏情况下运行时间呈指数级,但在实践中通常要好得多,它提供了一种重要的替代方案。我们通过为加权多状态最大简约系统发育问题引入一种可证明最优的方法,报告了在这个方向上的进展。该方法基于对布内曼图概念的推广,布内曼图是用于二进制序列的高效精确方法的关键构造,以便应用于具有任意有限数量状态且具有任意状态转移权重的序列。我们使用这种广义布内曼图为多状态问题实现了一种整数线性规划(ILP)方法,并证明所得方法能够在与流行启发式方法相当的运行时间内解决先前精确方法难以处理的数据集。我们进一步在一组难度较小的问题实例上表明,相对于中等难度问题上的领先启发式方法,ILP方法在平均情况下的运行时间大幅减少。我们的工作为可证明最优的最大简约系统发育推断提供了第一种方法,该方法对于具有多个字符的多状态数据集是实用的。