Suppr超能文献

使用基因组模型研究环境方差的遗传控制。

Use of genomic models to study genetic control of environmental variance.

作者信息

Yang Ye, Christensen Ole F, Sorensen Daniel

机构信息

Department of Genetics and Biotechnology, Faculty of Science and Technology, Aarhus University, DK-8830 Tjele, Denmark.

出版信息

Genet Res (Camb). 2011 Apr;93(2):125-38. doi: 10.1017/S0016672311000012. Epub 2011 Mar 11.

Abstract

Vast amount of genetic marker information is being used to obtain insight into the genetic architecture of complex traits, for locating genomic regions (quantitative trait loci (QTL)) affecting disease and for enhancing the accuracy of prediction of genetic values in selection programmes. The genomic model commonly found in the literature, with marker effects affecting mean only, is extended to investigate putative effects at the level of the environmental variance. Two classes of models are proposed and their behaviour, studied using simulated data, indicates that they are capable of detecting genetic variation at the level of mean and variance. Implementation is via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a measure of global fit, in their ability to detect QTL effects and in terms of their predictive power. The models are subsequently fitted to back fat thickness data in pigs. The analysis of back fat thickness shows that the data support genomic models with effects on the mean but not on the variance. The relative sizes of experiment necessary to detect effects on mean and variance is discussed and an extension of the McMC algorithm is proposed.

摘要

大量的遗传标记信息正被用于深入了解复杂性状的遗传结构,用于定位影响疾病的基因组区域(数量性状基因座(QTL))以及提高选择计划中遗传值预测的准确性。文献中常见的基因组模型,其标记效应仅影响均值,在此基础上进行扩展以研究环境方差水平上的假定效应。提出了两类模型,使用模拟数据对其行为进行研究,结果表明它们能够检测均值和方差水平上的遗传变异。通过马尔可夫链蒙特卡罗(McMC)算法进行实现。从全局拟合度、检测QTL效应的能力以及预测能力等方面对这些模型进行比较。随后将这些模型应用于猪的背膘厚度数据。背膘厚度分析表明,数据支持对均值有影响但对方差无影响的基因组模型。讨论了检测均值和方差效应所需实验的相对规模,并提出了McMC算法的一种扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验