Department of Inorganic, Materials and Physical Chemistry, NIS Centre of Excellence and INSTM unit, University of Turin, Via P. Giuria 7, I-10125 Turin, Italy.
Small. 2011 Apr 4;7(7):930-8. doi: 10.1002/smll.201001229. Epub 2011 Mar 15.
In the past few years, strong efforts have been devoted to improving the frequency of optical-fiber communications. In particular, the use of a special kind of integrated optoelectronic device called an electroabsorption modulated laser (EML) allows communication at 10 Gb s(-1) or higher over long propagation spans (up to 80 km). Such devices are realized using the selective area growth (SAG) technique and are based on a multiple quantum well (MQW) distributed-feedback laser (DFB) monolithically integrated with a MQW electroabsorption modulator (EAM). Since the variation in the chemical composition between these two structures takes place on the micrometer scale, in order to study the spatial variation of the relevant parameters of the MQW EML structures, the X-ray microbeam available at the ESRF ID22 beamline is used. The effectiveness of the SAG technique in modulating the chemical composition of the quaternary alloy is proven by a micrometer-resolved X-ray fluorescence (μ-XRF) map. Here, reported micrometer-resolved extended X-ray absorption fine structure (μ-EXAFS) spectra represent the state of the art of μ-EXAFS achievable at third-generation synchrotron radiation sources. The results are in qualitative agreement with X-ray diffraction (XRD) and micrometer-resolved photoluminescence (μ-PL) data, but a technical improvement is still crucial in order to make μ-EXAFS really quantitative on such complex heterostructures.
在过去的几年中,人们为提高光纤通信的频率做出了巨大努力。特别是,使用一种特殊的集成光电设备,即电吸收调制激光器(EML),可以在长传播距离(长达 80 公里)上实现 10 Gb/s 或更高的通信速率。这种器件是使用选择性区域生长(SAG)技术实现的,基于多量子阱(MQW)分布式反馈激光器(DFB)与 MQW 电吸收调制器(EAM)单片集成。由于这两种结构之间的化学成分变化发生在微米尺度上,为了研究 MQW EML 结构的相关参数的空间变化,使用了 ESRF ID22 光束线提供的 X 射线微束。X 射线荧光(μ-XRF)图谱证明了 SAG 技术在调制四元合金化学成分方面的有效性。这里报道的微米分辨扩展 X 射线吸收精细结构(μ-EXAFS)谱代表了在第三代同步辐射源上实现的μ-EXAFS 的最新水平。结果与 X 射线衍射(XRD)和微米分辨光致发光(μ-PL)数据定性一致,但为了使μ-EXAFS 真正在这种复杂的异质结构上实现定量,仍需要进行技术改进。