Institut des Sciences Moléculaires d'Orsay, ISMO-CNRS, Université Paris Sud, Bât. 350 91405 Orsay cedex, France.
Langmuir. 2011 Apr 19;27(8):4928-35. doi: 10.1021/la200205e. Epub 2011 Mar 16.
Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials.
理解细菌在表面上的黏附是设计具有改进性能的新材料或控制生物膜形成和清除的关键步骤。和频发生(SFG)振动光谱已被用于原位研究金膜上十八硫醇(ODT)自组装单层(SAM)对亲水性和疏水性卵圆球菌模型细菌黏附的构象响应。本工作强调了 SFG 振动光谱是一种强大而独特的非侵入性生物物理技术,可用于探测和控制细菌与有序表面的相互作用。事实上,SFG 振动光谱的变化揭示了空气中以及暴露于水溶液或细菌黏附时 ODT SAM 的不同构象。此外,这种效应取决于细菌细胞表面的性质。SFG 光谱模型表明,疏水性细菌会使 ODT SAM 烷基链末端部分变平,而亲水性细菌则会使 ODT SAM 末端部分抬起。因此,微生物诱导的接枝链的改变会影响所需的界面功能,这一结果在设计新型反应性材料时应加以考虑。