MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02114, USA.
J Neurosci. 2011 Mar 16;31(11):4166-77. doi: 10.1523/JNEUROSCI.4184-10.2011.
Amyotrophic lateral sclerosis (ALS) is characterized by predominant vulnerability and central degeneration of both corticospinal/corticobulbar motor neurons (CSMN; "upper motor neurons") in cerebral cortex, and spinal/bulbar motor neurons (SMN; "lower motor neurons") in spinal cord and brainstem. Increasing evidence indicates broader cerebral cortex pathology in cognitive, sensory, and association systems in select cases. It remains unclear whether widely accepted transgenic ALS models, in particular hSOD1(G93A) mice, undergo degeneration of CSMN and molecularly/developmentally closely related populations of nonmotor projection neurons [e.g., other subcerebral projection neurons (SCPN)], and whether potential CSMN/SCPN degeneration is specific and early. This relative lack of knowledge regarding upper motor neuron pathology in these ALS model mice has hindered both molecular-pathophysiologic understanding of ALS and their use toward potential CSMN therapeutic approaches. Here, using a combination of anatomic, cellular, transgenic labeling, and newly available neuronal subtype-specific molecular analyses, we identify that CSMN and related nonmotor SCPN specifically and progressively degenerate in hSOD1(G93A) mice. Degeneration starts quite early and presymptomatically, by postnatal day 30. Other neocortical layers, cortical interneurons, and other projection neuron populations, even within layer V, are not similarly affected. Nonneuronal pathology in neocortex (activated astroglia and microglia) is consistent with findings in human ALS cortex and in affected mouse and human spinal cord. These results indicate previously unknown neuron type-specific vulnerability of CSMN/sensory and association SCPN, and identify that characteristic dual CSMN and SMN degeneration is conserved in hSOD1(G93A) mice. These results provide a foundation for detailed investigation of CSMN/SCPN vulnerability and toward potential CSMN therapeutics in ALS.
肌萎缩侧索硬化症(ALS)的特征是大脑皮层中的皮质脊髓/皮质延髓运动神经元(CSMN;“上运动神经元”)和脊髓/延髓中的运动神经元(SMN;“下运动神经元”)明显易损和中央变性。越来越多的证据表明,在某些情况下,特定的认知、感觉和联想系统的大脑皮层病理学更为广泛。目前尚不清楚是否广泛接受的转基因 ALS 模型,特别是 hSOD1(G93A)小鼠,会发生 CSMN 及其分子上/发育上密切相关的非运动投射神经元(例如,其他亚脑投射神经元(SCPN))的变性,以及潜在的 CSMN/SCPN 变性是否具有特异性和早期特征。这些 ALS 模型小鼠中,关于上运动神经元病理学的相关知识相对缺乏,这既阻碍了对 ALS 的分子病理生理学的理解,也阻碍了它们在潜在的 CSMN 治疗方法中的应用。在这里,我们使用解剖学、细胞学、转基因标记和新的可用神经元亚型特异性分子分析的组合,确定 hSOD1(G93A)小鼠中的 CSMN 和相关的非运动 SCPN 会特异性和进行性变性。变性始于相当早的时期,甚至在出生后 30 天就已经出现症状前阶段。其他新皮层层、皮层中间神经元和其他投射神经元群体,甚至在第 V 层内,也没有受到类似的影响。新皮层中的非神经元病理学(激活的星形胶质细胞和小胶质细胞)与人类 ALS 皮层以及受影响的小鼠和人类脊髓中的发现一致。这些结果表明,CSMN/感觉和联想 SCPN 以前未知的神经元类型特异性易损性,并表明特征性的 CSMN 和 SMN 双重变性在 hSOD1(G93A)小鼠中是保守的。这些结果为详细研究 CSMN/SCPN 的易损性以及 ALS 中的潜在 CSMN 治疗提供了基础。