Suppr超能文献

在宿主内竞争决定了温带噬菌体的繁殖成功。

Within-host competition determines reproductive success of temperate bacteriophages.

机构信息

Institute of Integrative Biology, Department of Environmental Sciences, ETH Zürich, Zürich, Switzerland.

出版信息

ISME J. 2011 Sep;5(9):1451-60. doi: 10.1038/ismej.2011.30. Epub 2011 Mar 17.

Abstract

Within-host competition between parasites is frequently invoked as a major force for parasite evolution, yet quantitative studies on its extent in an organismal group are lacking. Temperate bacteriophages are diverse and abundant parasites of bacteria, distinguished by their ability to enter a facultative dormant state in their host. Bacteria can accumulate multiple phages that may eventually abandon dormancy in response to host stress. Host resources are then converted into phage particles, whose release requires cell death. To study within-host competition between phages, I used the bacterium Escherichia coli and 11 lambdoid phages to construct single and double lysogens. Lysogenic bacterial cultures were then induced and time to host cell lysis and productivity of phages was measured. In double lysogens, this revealed strong competitive interactions as in all cases productivity of at least one phage declined. The outcome of within-host competition was often asymmetrical, and phages were found to vary hierarchically in within-host competitive ability. In double infections, the phage with the shorter lysis time determined the timing of cell lysis, which was associated with a competitive advantage when time differences were large. The results emphasize that within-host competition greatly affects phage fitness and that multiple infections should be considered an integral part of bacteriophage ecology.

摘要

寄生虫在宿主体内的竞争常被认为是寄生虫进化的主要力量,但在一个生物群体中,对其竞争程度的定量研究还很缺乏。温和噬菌体是细菌的多样化和丰富的寄生虫,其特点是能够在宿主中进入一种兼性休眠状态。细菌可以积累多个噬菌体,这些噬菌体最终可能会在宿主受到压力时放弃休眠。然后,宿主资源被转化为噬菌体颗粒,其释放需要细胞死亡。为了研究噬菌体在宿主体内的竞争,我使用了细菌大肠杆菌和 11 种 lambdoid 噬菌体来构建单一和双重溶原菌。然后诱导溶原菌培养物,并测量宿主细胞裂解和噬菌体生产力的时间。在双重溶原菌中,这揭示了强烈的竞争相互作用,因为在所有情况下,至少有一种噬菌体的生产力都下降了。宿主体内竞争的结果往往是不对称的,并且发现噬菌体在宿主体内的竞争能力上存在等级差异。在双重感染中,具有较短裂解时间的噬菌体决定了细胞裂解的时间,当时间差异较大时,这与竞争优势相关。结果强调了宿主体内竞争极大地影响了噬菌体的适应性,并且应该将多重感染视为噬菌体生态学的一个组成部分。

相似文献

1
Within-host competition determines reproductive success of temperate bacteriophages.
ISME J. 2011 Sep;5(9):1451-60. doi: 10.1038/ismej.2011.30. Epub 2011 Mar 17.
2
Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny.
mBio. 2024 Jun 12;15(6):e0050424. doi: 10.1128/mbio.00504-24. Epub 2024 May 17.
3
Repeated outbreaks drive the evolution of bacteriophage communication.
Elife. 2021 Jan 18;10:e58410. doi: 10.7554/eLife.58410.
5
Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.
7
Evolution of Lysis-Lysogeny Strategies Reproduces Observed Lysogeny Propensities in Temperate Bacteriophages.
Front Microbiol. 2017 Jul 26;8:1386. doi: 10.3389/fmicb.2017.01386. eCollection 2017.
8
What makes a temperate phage an effective bacterial weapon?
mSystems. 2024 Jun 18;9(6):e0103623. doi: 10.1128/msystems.01036-23. Epub 2024 May 10.
9
Lysogeny in nature: mechanisms, impact and ecology of temperate phages.
ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14.
10
Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
Annu Rev Microbiol. 2021 Oct 8;75:563-581. doi: 10.1146/annurev-micro-033121-020757. Epub 2021 Aug 3.

引用本文的文献

2
Crosstalk between inovirus core gene and accessory toxin-antitoxin system mediates polylysogeny.
Nat Commun. 2025 Aug 7;16(1):7268. doi: 10.1038/s41467-025-62378-6.
5
A prophage competition element protects Salmonella from lysis.
Cell Host Microbe. 2024 Dec 11;32(12):2063-2079.e8. doi: 10.1016/j.chom.2024.10.012. Epub 2024 Nov 7.
6
Tailless and filamentous prophages are predominant in marine Vibrio.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae202.
7
Phage against the Machine: The SIE-ence of Superinfection Exclusion.
Viruses. 2024 Aug 23;16(9):1348. doi: 10.3390/v16091348.
8
Warming alters life-history traits and competition in a phage community.
Appl Environ Microbiol. 2024 May 21;90(5):e0028624. doi: 10.1128/aem.00286-24. Epub 2024 Apr 16.
10
Small protein modules dictate prophage fates during polylysogeny.
Nature. 2023 Aug;620(7974):625-633. doi: 10.1038/s41586-023-06376-y. Epub 2023 Jul 26.

本文引用的文献

1
ESTABLISHING GENETIC CORRELATIONS INVOLVING PARASITE VIRULENCE.
Evolution. 1998 Dec;52(6):1865-1868. doi: 10.1111/j.1558-5646.1998.tb02266.x.
2
Inhibition of superinfection and the evolution of viral latency.
J Virol. 2010 Oct;84(19):10200-8. doi: 10.1128/JVI.00865-10. Epub 2010 Jul 21.
3
Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2503-13. doi: 10.1098/rstb.2010.0066.
4
Altruism, spite, and greenbeards.
Science. 2010 Mar 12;327(5971):1341-4. doi: 10.1126/science.1178332.
5
Tuning a genetic switch: experimental evolution and natural variation of prophage induction.
Evolution. 2010 Apr 1;64(4):1086-97. doi: 10.1111/j.1558-5646.2009.00882.x. Epub 2009 Nov 5.
6
Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction.
Appl Environ Microbiol. 2009 Nov;75(22):7142-52. doi: 10.1128/AEM.00950-09. Epub 2009 Sep 25.
9
Spite and virulence in the bacterium Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5703-7. doi: 10.1073/pnas.0810850106. Epub 2009 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验