Division of Virology, National Center for Epidemiology, H-1097 Budapest, Gyali út 2-6, Hungary.
Mediterr J Hematol Infect Dis. 2009 Nov 15;1(2):e2009012. doi: 10.4084/MJHID.2009.012.
Epstein-Barr virus (EBV), a human gammaherpesvirus, is associated with a series of malignant tumors. These include lymphomas (Burkitt's lymphoma, Hodgkin's disease, T/NK-cell lymphoma, post-transplant lymphoproliferative disease, AIDS-associated lymphoma, X-linked lymphoproliferative syndrome), carcinomas (nasopharyngeal carcinoma, gastric carcinoma, carcinomas of major salivary glands, thymic carcinoma, mammary carcinoma) and a sarcoma (leiomyosarcoma). The latent EBV genomes persist in the tumor cells as circular episomes, co-replicating with the cellular DNA once per cell cycle. The expression of latent EBV genes is cell type specific due to the strict epigenetic control of their promoters. DNA methylation, histone modifications and binding of key cellular regulatory proteins contribute to the regulation of alternative promoters for transcripts encoding the nuclear antigens EBNA1 to 6 and affect the activity of promoters for transcripts encoding transmembrane proteins (LMP1, LMP2A, LMP2B). In addition to genes transcribed by RNA polymerase II, there are also two RNA polymerase III transcribed genes in the EBV genome (EBER 1 and 2). The 5' and internal regulatory sequences of EBER 1 and 2 transcription units are invariably unmethylated. The highly abundant EBER 1 and 2 RNAs are not translated to protein. Based on the cell type specific epigenetic marks associated with latent EBV genomes one can distinguish between viral epigenotypes that differ in transcriptional activity in spite of having an identical (or nearly identical) DNA sequence. Whereas latent EBV genomes are regularly targeted by epigenetic control mechanisms in different cell types, EBV encoded proteins may, in turn, affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. There are EBNA1 binding sites in the human genome. Because high affinity binding of EBNA1 to its recognition sites is known to specify sites of DNA demethylation, we suggest that binding of EBNA1 to its cellular target sites may elicit local demethylation and contribute thereby to the activation of silent cellular promoters. EBNA2 interacts with histone acetyltransferases, and EBNALP (EBNA5) coactivates transcription by displacing histone deacetylase 4 from EBNA2-bound promoter sites. EBNA3C (EBNA6) seems to be associated both with histone acetylases and deacetylases, although in separate complexes. LMP1, a transmembrane protein involved in malignant transformation, can affect both alternative systems of epigenetic memory, DNA methylation and the Polycomb-trithorax group of protein complexes. In epithelial cells LMP1 can up-regulate DNA methyltransferases and, in Hodgkin lymphoma cells, induce the Polycomb group protein Bmi-1. In addition, LMP1 can also modulate cellular gene expression programs by affecting, via the NF-κB pathway, levels of cellular microRNAs miR-146a and miR-155. These interactions may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms, autoimmune phenomena, immunodeficiency). Thus, Epstein-Barr virus, similarly to other viruses and certain bacteria, may induce pathological changes by epigenetic reprogramming of host cells. Elucidation of the epigenetic consequences of EBV-host interactions (within the framework of the emerging new field of patho-epigenetics) may have important implications for therapy and disease prevention, because epigenetic processes are reversible and continuous silencing of EBV genes contributing to patho-epigenetic changes may prevent disease development.
EB 病毒(EBV)是一种人类γ疱疹病毒,与一系列恶性肿瘤有关。这些肿瘤包括淋巴瘤(伯基特淋巴瘤、霍奇金淋巴瘤、T/NK 细胞淋巴瘤、移植后淋巴组织增生性疾病、艾滋病相关淋巴瘤、X 连锁淋巴组织增生综合征)、癌(鼻咽癌、胃癌、大涎腺癌、胸腺癌、乳腺癌)和肉瘤(平滑肌肉瘤)。潜伏的 EBV 基因组作为环状 episome 存在于肿瘤细胞中,与细胞 DNA 一起在每个细胞周期内复制。由于其启动子的严格表观遗传控制,潜伏 EBV 基因的表达具有细胞类型特异性。DNA 甲基化、组蛋白修饰和关键细胞调节蛋白的结合有助于调节编码核抗原 EBNA1 到 6 的转录物的替代启动子,并影响编码跨膜蛋白(LMP1、LMP2A、LMP2B)的转录物的启动子的活性。除了由 RNA 聚合酶 II 转录的基因外,EBV 基因组中还有两个由 RNA 聚合酶 III 转录的基因(EBER1 和 2)。EBER1 和 2 转录单元的 5'和内部调节序列始终是非甲基化的。高度丰富的 EBER1 和 2 RNA 不翻译成蛋白质。基于与潜伏 EBV 基因组相关的细胞类型特异性表观遗传标记,可以区分转录活性不同的病毒表型,尽管它们具有相同(或几乎相同)的 DNA 序列。尽管潜伏的 EBV 基因组经常受到不同细胞类型的表观遗传控制机制的靶向,但 EBV 编码蛋白可能通过与相同的表观遗传调节机制相互作用,从而影响一组细胞启动子的活性。人类基因组中有 EBNA1 结合位点。由于已知 EBNA1 与其识别位点的高亲和力结合指定了 DNA 去甲基化的位点,因此我们建议 EBNA1 与细胞靶位点的结合可能引发局部去甲基化,并因此有助于沉默细胞启动子的激活。EBNA2 与组蛋白乙酰转移酶相互作用,EBNALP(EBNA5)通过将组蛋白脱乙酰酶 4 从 EBNA2 结合的启动子位点置换来共同激活转录。EBNA3C(EBNA6)似乎与组蛋白乙酰酶和脱乙酰酶都有关联,尽管在不同的复合物中。参与恶性转化的跨膜蛋白 LMP1 可以影响两种替代的表观遗传记忆系统,DNA 甲基化和 Polycomb-trithorax 组蛋白复合物。在上皮细胞中,LMP1 可以上调 DNA 甲基转移酶,在霍奇金淋巴瘤细胞中,诱导 Polycomb 组蛋白 Bmi-1。此外,LMP1 还可以通过影响 NF-κB 途径来调节细胞基因表达程序,从而影响细胞 microRNAs miR-146a 和 miR-155 的水平。这些相互作用可能导致表观遗传失调和随后的细胞功能障碍,这可能在或有助于病理变化的发展(例如,恶性肿瘤的起始和进展、自身免疫现象、免疫缺陷)。因此,与其他病毒和某些细菌一样,EB 病毒可能通过宿主细胞的表观遗传重编程诱导病理变化。阐明 EBV-宿主相互作用的表观遗传后果(在新兴的病理表观遗传学领域内)可能对治疗和疾病预防具有重要意义,因为表观遗传过程是可逆的,并且持续沉默导致病理表观遗传变化的 EBV 基因可能预防疾病的发展。