Suppr超能文献

两字母至九字母单词的类型和标记双字母频率以及字谜难度的预测。

Type and token bigram frequencies for two-through nine-letter words and the prediction of anagram difficulty.

机构信息

Applied Psychology, Department of Psychology University of Durham, Thornaby-on-Tees, Durham, TS17 6BH, UK.

出版信息

Behav Res Methods. 2011 Jun;43(2):491-8. doi: 10.3758/s13428-011-0068-x.

Abstract

Recent research on anagram solution has produced two original findings. First, it has shown that a new bigram frequency measure called top rank, which is based on a comparison of summed bigram frequencies, is an important predictor of anagram difficulty. Second, it has suggested that the measures from a type count are better than token measures at predicting anagram difficulty. Testing these hypotheses has been difficult because the computation of the bigram statistics is difficult. We present a program that calculates bigram measures for two-to nine-letter words. We then show how the program can be used to compare the contribution of top rank and other bigram frequency measures derived from both a token and a type count. Contrary to previous research, we report that type measures are not better at predicting anagram solution times and that top rank is not the best predictor of anagram difficulty. Lastly we use this program to show that type bigram frequencies are not as good as token bigram frequencies at predicting word identification reaction time.

摘要

最近关于字谜解答的研究有两个原创发现。第一,它表明一种新的双字母频率度量方法,称为顶级排名,该方法基于对总和双字母频率的比较,是字谜难度的重要预测指标。第二,它表明来自类型计数的度量比标记度量更能预测字谜难度。由于双字母统计的计算很困难,因此很难验证这些假设。我们提出了一个程序,用于计算两个到九个字母单词的双字母度量。然后,我们展示了如何使用该程序来比较顶级排名和其他从标记计数和类型计数派生的双字母频率度量的贡献。与之前的研究相反,我们报告说类型度量并不能更好地预测字谜解决方案的时间,并且顶级排名也不是字谜难度的最佳预测指标。最后,我们使用该程序表明,类型双字母频率不如标记双字母频率能够更好地预测单词识别反应时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验