Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
J Chem Phys. 2011 Mar 21;134(11):114306. doi: 10.1063/1.3560660.
The rotational-state-selected CH (v = 0, J, F(i)) beam has been prepared by using an electric hexapole and applied to the crossed beam reaction of CH (v = 0, J, F(i)) + O(2) → OH (A) + CO at different O(2) beam conditions. The rotational state selected reactive cross sections of CH (RSSRCS-CH) turn out to depend remarkably on the rotational state distribution of O(2) molecules at a collision energy of ∼ 0.19 eV. The reactivity of CH molecules in the N = 1 rotational states (namely ∣J = 1∕2, F(2)> and ∣J = 3∕2, F(1)> states, N designates the angular momentum excluding spin) becomes strongly enhanced upon a lowering of the rotational temperature of the O(2) beam. The RSSRCS-CH in these two rotational states correlate linearly with the population of O(2) molecule in the specific K(O(2)) frame rotation number states: CH(|J = 1/2,F(2)>) with O(2)(|K(O(2)) = 1>);CH(|J = 3/2,F(1)>) with O(2)(|K(O(2)) = 3>). These linear correlations mean that the rotational-state-selected CH molecules are selectively reactive upon the incoming O(2) molecules in a specific rotational state; here, we use the term "rotationally correlated reactivity" to such specific reactivity depending on the combination of the rotational states between two molecular reactants. In addition, the steric asymmetry in the oriented CH (∣J = 1∕2, F(2), M = 1∕2>) + O(2) (|K(O(2)) = 1>) reaction turns out to be negligible (< ±1%). This observation supports the reaction mechanism as theoretically predicted by Huang et al. [J. Phys. Chem. A 106, 5490 (2002)] that the first step is an intermediate formation with no energy barrier in which C-atom of CH molecule attacks on one O-atom of O(2) molecule at a sideways configuration.
已通过使用电六极子制备了旋转态选择的 CH(v = 0,J,F(i))束,并将其应用于 CH(v = 0,J,F(i))+ O(2)→OH(A)+ CO 的交叉束反应中,在不同的 O(2)束条件下。在碰撞能量约为 0.19 eV 时,CH(旋转态选择反应横截面,RSSRCS-CH)的旋转态选择反应横截面明显取决于 O(2)分子的旋转态分布。当 O(2)束的旋转温度降低时,CH 分子在 N = 1 旋转态(即∣J = 1∕2,F(2)>和∣J = 3∕2,F(1)>态,N 表示除自旋外的角动量)中的反应性大大增强。这两个旋转态中的 RSSRCS-CH 与特定 K(O(2))框架旋转数态中 O(2)分子的种群线性相关:CH(|J = 1∕2,F(2)>)与 O(2)(|K(O(2))= 1>);CH(|J = 3∕2,F(1)>)与 O(2)(|K(O(2))= 3>)。这些线性相关性意味着,旋转态选择的 CH 分子在特定旋转态下对进入的 O(2)分子具有选择性反应性;在这里,我们使用术语“旋转相关反应性”来描述这种特定的反应性,这种反应性取决于两个分子反应物之间的旋转态组合。此外,取向 CH(∣J = 1∕2,F(2),M = 1∕2>)+ O(2)(|K(O(2))= 1>)反应中的空间非对称性可以忽略(<±1%)。这一观察结果支持了 Huang 等人在理论上预测的反应机制[J. Phys. Chem. A 106,5490(2002)],即第一步是无能量壁垒的中间体形成,其中 CH 分子的 C 原子以侧位构型攻击 O(2)分子的一个 O 原子。