Suppr超能文献

c-di-GMP 核糖开关与其第二信使配体的相互作用。

Interactions of the c-di-GMP riboswitch with its second messenger ligand.

机构信息

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA.

出版信息

Biochem Soc Trans. 2011 Apr;39(2):647-51. doi: 10.1042/BST0390647.

Abstract

The c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] riboswitch is a macromolecular target in the c-di-GMP second messenger signalling pathway. It regulates many genes related to c-di-GMP metabolism as well as genes involved in bacterial motility, virulence and biofilm formation. The riboswitch makes asymmetric contacts to the bases and phosphate backbone of this symmetric dinucleotide. The phylogenetics suggested and mutagenesis has confirmed that this is a flexible motif where variants can make alternative interactions with each of the guanine bases of c-di-GMP. A mutant riboswitch has been designed that can bind a related molecule, c-di-AMP, confirming the most important contacts made to the ligand. The binding kinetics reveal that this is a kinetically controlled riboswitch and mutations to the riboswitch lead to increases in the off-rate. This riboswitch is therefore flexible in sequence as well as kinetic properties.

摘要

c-di-GMP(双-(3'-5')-环二鸟苷酸单磷酸)核糖开关是 c-di-GMP 第二信使信号通路中的一种大分子靶标。它调节与 c-di-GMP 代谢以及与细菌运动性、毒力和生物膜形成相关的许多基因。核糖开关不对称地与该对称二核苷酸的碱基和磷酸骨架接触。系统发育学表明,突变已证实这是一个灵活的模体,其中变体可以与 c-di-GMP 的每个鸟嘌呤碱基进行替代相互作用。已经设计了一种突变的核糖开关,它可以与相关分子 c-di-AMP 结合,从而证实了与配体的最重要接触。结合动力学表明这是一个动力学控制的核糖开关,并且核糖开关的突变导致失活速率增加。因此,这种核糖开关在序列和动力学性质上都是灵活的。

相似文献

1
Interactions of the c-di-GMP riboswitch with its second messenger ligand.
Biochem Soc Trans. 2011 Apr;39(2):647-51. doi: 10.1042/BST0390647.
2
Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7757-62. doi: 10.1073/pnas.1018857108. Epub 2011 Apr 25.
3
Structural basis of ligand binding by a c-di-GMP riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1218-23. doi: 10.1038/nsmb.1702. Epub 2009 Nov 8.
4
Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1212-7. doi: 10.1038/nsmb.1701. Epub 2009 Nov 8.
5
Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch .
Biochemistry. 2010 Aug 31;49(34):7351-9. doi: 10.1021/bi100671e.
6
Identification of c-di-GMP derivatives resistant to an EAL domain phosphodiesterase.
Biochemistry. 2013 Jan 15;52(2):365-77. doi: 10.1021/bi301510v. Epub 2013 Jan 3.
8
Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer.
Biochemistry. 2012 Jan 10;51(1):425-32. doi: 10.1021/bi2016662. Epub 2011 Dec 27.
9
Differential analogue binding by two classes of c-di-GMP riboswitches.
J Am Chem Soc. 2011 Oct 5;133(39):15578-92. doi: 10.1021/ja204650q. Epub 2011 Sep 8.
10
A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.
RNA Biol. 2015;12(11):1189-97. doi: 10.1080/15476286.2015.1062970. Epub 2015 Jun 26.

引用本文的文献

1
Discovery of thiazostatin D/E using UPLC-HR-MS2-based metabolomics and σ-factor engineering of sp. SE50/110.
Front Bioeng Biotechnol. 2024 Nov 25;12:1497138. doi: 10.3389/fbioe.2024.1497138. eCollection 2024.
3
Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile.
PLoS Pathog. 2022 Jul 5;18(7):e1010677. doi: 10.1371/journal.ppat.1010677. eCollection 2022 Jul.
4
The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP.
Front Microbiol. 2021 Jul 14;12:689619. doi: 10.3389/fmicb.2021.689619. eCollection 2021.
5
The lost language of the RNA World.
Sci Signal. 2017 Jun 13;10(483):eaam8812. doi: 10.1126/scisignal.aam8812.
6
Long-Range Interactions in Riboswitch Control of Gene Expression.
Annu Rev Biophys. 2017 May 22;46:455-481. doi: 10.1146/annurev-biophys-070816-034042. Epub 2017 Mar 30.
7
Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic .
Front Microbiol. 2017 Jan 11;7:2160. doi: 10.3389/fmicb.2016.02160. eCollection 2016.
8
An Efficient Minimum Free Energy Structure-Based Search Method for Riboswitch Identification Based on Inverse RNA Folding.
PLoS One. 2015 Jul 31;10(7):e0134262. doi: 10.1371/journal.pone.0134262. eCollection 2015.
9
Control of bacterial exoelectrogenesis by c-AMP-GMP.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5389-94. doi: 10.1073/pnas.1419264112. Epub 2015 Apr 6.
10
Crosstalk between Mycobacterium tuberculosis and the host cell.
Semin Immunol. 2014 Dec;26(6):486-96. doi: 10.1016/j.smim.2014.09.002. Epub 2014 Oct 7.

本文引用的文献

1
An allosteric self-splicing ribozyme triggered by a bacterial second messenger.
Science. 2010 Aug 13;329(5993):845-848. doi: 10.1126/science.1190713.
2
Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch .
Biochemistry. 2010 Aug 31;49(34):7351-9. doi: 10.1021/bi100671e.
3
4
Second messenger-mediated adjustment of bacterial swimming velocity.
Cell. 2010 Apr 2;141(1):107-16. doi: 10.1016/j.cell.2010.01.018. Epub 2010 Mar 18.
5
Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP.
Science. 2010 Feb 12;327(5967):866-8. doi: 10.1126/science.1181185.
8
Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1212-7. doi: 10.1038/nsmb.1701. Epub 2009 Nov 8.
9
Structural basis of ligand binding by a c-di-GMP riboswitch.
Nat Struct Mol Biol. 2009 Dec;16(12):1218-23. doi: 10.1038/nsmb.1702. Epub 2009 Nov 8.
10
Structural and mechanistic determinants of c-di-GMP signalling.
Nat Rev Microbiol. 2009 Oct;7(10):724-35. doi: 10.1038/nrmicro2203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验