Suppr超能文献

微阵列基因表达数据中有用基因的简约选择。

Parsimonious selection of useful genes in microarray gene expression data.

机构信息

Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Omega Building, North Campus, Barcelona, Spain.

出版信息

Adv Exp Med Biol. 2011;696:45-55. doi: 10.1007/978-1-4419-7046-6_5.

Abstract

Machine learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a nontrivial undertaking. In this study, we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achievement of more stable performance estimates. Our findings show that the proposed methodology permits a drastic reduction in dimension, offering attractive solutions in terms of both prediction accuracy and number of explanatory genes; a dimensionality reduction technique preserving discrimination capabilities is used for visualization of the selected genes.

摘要

近年来,机器学习方法在解决微阵列基因表达数据中癌症分类的多学科问题方面取得了重大进展。这些任务的特点是特征数量多,观察数量少,使得建模成为一项艰巨的任务。在这项研究中,我们应用了熵过滤方法进行基因选择,结合了几种现成的分类器。引入自举重采样技术可以实现更稳定的性能估计。我们的研究结果表明,所提出的方法允许大幅度降低维度,在预测准确性和解释基因数量方面提供了有吸引力的解决方案;用于可视化所选基因的降维技术保留了区分能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验