Suppr超能文献

使用整体最小误差搜索提高半调图像安全性。

Halftone-image security improving using overall minimal-error searching.

机构信息

Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

出版信息

IEEE Trans Image Process. 2011 Oct;20(10):2800-12. doi: 10.1109/TIP.2011.2131667. Epub 2011 Mar 24.

Abstract

For image-based data hiding, it is difficult to achieve good image quality when high embedding capacity and 100% data extraction are also demanded. In this study, the proposed method, namely, overall minimal-error searching (OMES) is developed to meet the aforementioned requirements. Moreover, the concept of secret sharing is also adopted to distribute watermarks into multiple halftone images, and the embedded information can only be extracted when all of the marked images are gathered. The OMES modifies the halftone values at the same position of all host images with the trained substitution table (S-Table). The S-Table makes the original combination of these halftone values as another meaningful combination for embedding watermark, which is the key part in determining the image quality. Thus, an optimization procedure is proposed to achieve the optimized S-Table. Two different encoders, called error-diffused-based and least-mean-square-based approaches are also developed to cooperate with the proposed OMES to cope with high processing speed and high image quality applications, respectively. Finally, for resisting the issues caused by the print-and-scan attack, such as zooming, rotation, and dot gain effect, a compensation correction procedure is also proposed. As demonstrated in the experimental results, the proposed approach provides good image quality, and is able to guard against some frequent happened attacks in printing applications.

摘要

对于基于图像的数据隐藏,如果同时要求高嵌入容量和 100%的数据提取,则很难实现良好的图像质量。在本研究中,提出了一种名为整体最小误差搜索(OMES)的方法,以满足上述要求。此外,还采用了秘密共享的概念将水印分配到多个半色调图像中,并且只有收集所有标记的图像时才能提取嵌入的信息。OMES 使用经过训练的替换表(S-Table)修改所有宿主图像中相同位置的半色调值。S-Table 使这些半色调值的原始组合成为用于嵌入水印的另一种有意义的组合,这是确定图像质量的关键部分。因此,提出了一种优化过程来实现优化的 S-Table。还开发了两种不同的编码器,称为基于误差扩散的方法和基于最小均方的方法,分别与所提出的 OMES 合作,以满足高速处理和高质量图像应用的要求。最后,针对打印和扫描攻击引起的问题,例如缩放、旋转和点增益效果,还提出了一种补偿校正过程。如实验结果所示,所提出的方法提供了良好的图像质量,并能够抵御打印应用中一些常见的攻击。

相似文献

1
Halftone-image security improving using overall minimal-error searching.
IEEE Trans Image Process. 2011 Oct;20(10):2800-12. doi: 10.1109/TIP.2011.2131667. Epub 2011 Mar 24.
2
Orientation modulation for data hiding in clustered-dot halftone prints.
IEEE Trans Image Process. 2010 Aug;19(8):2070-84. doi: 10.1109/TIP.2010.2046795. Epub 2010 Mar 29.
3
High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter.
IEEE Trans Image Process. 2006 Jun;15(6):1665-79. doi: 10.1109/tip.2006.871080.
4
Oriented modulation for watermarking in direct binary search halftone images.
IEEE Trans Image Process. 2012 Sep;21(9):4117-27. doi: 10.1109/TIP.2012.2198221. Epub 2012 May 8.
5
Data hiding watermarking for halftone images.
IEEE Trans Image Process. 2002;11(4):477-84. doi: 10.1109/TIP.2002.999680.
6
Progressive halftone watermarking using multilayer table lookup strategy.
IEEE Trans Image Process. 2015 Jul;24(7):2009-24. doi: 10.1109/TIP.2014.2387417. Epub 2015 Jan 5.
7
High capacity data hiding for error-diffused block truncation coding.
IEEE Trans Image Process. 2012 Dec;21(12):4808-18. doi: 10.1109/TIP.2012.2210236. Epub 2012 Jul 25.
8
Joint compression/watermarking scheme using majority-parity guidance and halftoning-based block truncation coding.
IEEE Trans Image Process. 2010 Aug;19(8):2056-69. doi: 10.1109/TIP.2010.2045709. Epub 2010 Mar 15.
9
Adaptive error diffusion and its application in multiresolution rendering.
IEEE Trans Image Process. 1996;5(7):1184-96. doi: 10.1109/83.502397.
10
Halftone image classification using LMS algorithm and naive Bayes.
IEEE Trans Image Process. 2011 Oct;20(10):2837-47. doi: 10.1109/TIP.2011.2136354.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验