National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-0608, USA.
Brain Res. 2011 May 16;1390:41-9. doi: 10.1016/j.brainres.2011.03.044. Epub 2011 Mar 24.
The dopamine transporter knockout (DAT KO) mouse is a model of chronic hyperdopaminergia used to study a wide range of neuropsychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), drug abuse, depression, and Parkinson's disease (PD). Early studies characterizing this mouse model revealed a subtle, but significant, decrease in the anterior striatal volume of DAT KO mice accompanied by a decrease in neuronal cell body numbers (Cyr et al., 2005). The present studies were conducted to examine medium spiny neuron (MSN) morphology by extending these earlier reports to include multiscale imaging studies using correlated light microscopy (LM) and electron microscopy (EM) techniques. Specifically, we set out to determine if chronic hyperdopaminergia results in quantifiable or qualitative changes in DAT KO mouse MSNs relative to wild-type (WT) littermates. Using Neurolucida Explorer's morphometric analysis, we measured spine density, dendritic length and synapse number at ages that correspond with the previously reported changes in striatal volume and progressive cell loss. Light microscopic analysis using Neurolucida tracings of photoconverted striatal MSNs revealed a highly localized loss of dendritic spines on the proximal portion of the dendrite (30 μm from the soma) in the DAT KO group. Next, thick sections containing MSN dendritic segments located at a distance of 20-60 μm from the cell soma, a region of the dendrite where spine density is reported to be the highest, were analyzed using electron microscope tomography (EMT). Because of the resolution limits of LM, the EM analysis was an extra measure taken to assure that our analysis included nearly all spines. Spine density measurements collected from the EMT data revealed only a modest decrease in the DAT KO group (n=3 mice) compared to age-matched WT controls (n=3 mice), a trend that supports the LM findings. Finally, a synaptic quantification using unbiased stereology did not detect a difference between DAT KO mice (n=6 mice) and WT controls (n=7 mice) at the EM level, supporting the focal nature of the early synaptic loss. These findings suggest that DAT KO mice have MSNs with highly localized spine loss and not an overall morphologically distinct cell shape. The characterization of morphological changes in DAT KO mice may provide information about the neural substrates underlying altered behaviors in these mice, with relevance for human neurological disorders thought to involve altered dopaminergic homeostasis. Results from this study also indicate the difficulty in correlating structural changes across scales, as the results on fine structure revealed thus far are subtle and non-uniform across striatal MSNs. The complexities associated with multiscale studies are driving the development of shared online informatics resources by gaining access to data where it is being analyzed.
多巴胺转运体敲除(DAT KO)小鼠是一种慢性多巴胺能亢进模型,用于研究多种神经精神疾病,如精神分裂症、注意缺陷多动障碍(ADHD)、药物滥用、抑郁症和帕金森病(PD)。早期的研究表明,DAT KO 小鼠的前纹状体体积有轻微但显著的减少,同时神经元细胞体数量也减少(Cyr 等人,2005 年)。本研究通过扩展早期研究报告,包括使用相关光显微镜(LM)和电子显微镜(EM)技术的多尺度成像研究,来检查中脑纹状体神经元(MSN)的形态。具体来说,我们旨在确定慢性多巴胺能亢进是否会导致 DAT KO 小鼠 MSN 发生可量化或定性的变化,与野生型(WT)同窝仔相比。使用 Neurolucida Explorer 的形态计量分析,我们在与纹状体体积先前报道的变化和进行性细胞丢失相对应的年龄测量了棘密度、树突长度和突触数量。使用光镜分析 Neurolucida 对光转化的纹状体 MSN 的轨迹,揭示了 DAT KO 组在树突近端(距胞体 30 μm)处树突棘的高度局部丢失。接下来,对距离细胞体 20-60 μm 处的 MSN 树突段进行厚切片分析,该区域的树突棘密度报告最高,使用电子显微镜断层扫描(EMT)进行分析。由于 LM 的分辨率限制,EM 分析是额外的措施,以确保我们的分析包括几乎所有的棘。从 EMT 数据收集的棘密度测量值显示,与年龄匹配的 WT 对照组(n=3 只小鼠)相比,DAT KO 组(n=3 只小鼠)仅略有减少,这一趋势支持 LM 的发现。最后,使用无偏立体学进行的突触定量分析在 EM 水平上未检测到 DAT KO 小鼠(n=6 只小鼠)与 WT 对照组(n=7 只小鼠)之间的差异,支持早期突触丢失的局部性质。这些发现表明,DAT KO 小鼠的 MSN 具有高度局灶性的棘突丢失,而不是整体形态上不同的细胞形状。DAT KO 小鼠形态变化的特征可能为这些小鼠改变行为的神经基础提供信息,与认为涉及多巴胺能稳态改变的人类神经紊乱有关。本研究的结果还表明,跨尺度关联结构变化具有一定难度,因为迄今为止在精细结构上的结果是微妙的,并且在纹状体 MSN 中不均匀。多尺度研究的复杂性促使人们通过访问正在分析的数据来开发共享的在线信息资源。