Suppr超能文献

人免疫缺陷病毒 1 中有效负链强终止 DNA 转移的要求。

Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1.

机构信息

Department of Biochemistry and Biophysics, and the Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

出版信息

RNA Biol. 2011 Mar-Apr;8(2):230-6. doi: 10.4161/rna.8.2.14802. Epub 2011 Mar 1.

Abstract

After HIV-1 enters a human cell, its RNA genome is converted into double stranded DNA during the multistep process of reverse transcription. First (minus) strand DNA synthesis is initiated near the 5' end of the viral RNA, where only a short fragment of the genome is copied. In order to continue DNA synthesis the virus employs a complicated mechanism, which enables transferring of the growing minus strand DNA to a remote position at the genomic 3' end. This is called minus strand DNA transfer. The transfer enables regeneration of long terminal repeat sequences, which are crucial for viral genomic DNA integration into the host chromosome. Numerous factors have been identified that stimulate minus strand DNA transfer. In this review we focus on describing protein-RNA and RNA-RNA interactions, as well as RNA structural features, known to facilitate this step in reverse transcription.

摘要

HIV-1 进入人体细胞后,其 RNA 基因组在逆转录的多步过程中转化为双链 DNA。首先,在病毒 RNA 的 5' 端附近起始(-)链 DNA 的合成,其中仅复制基因组的一小段。为了继续 DNA 合成,病毒采用了一种复杂的机制,能够将生长中的(-)链 DNA 转移到基因组 3' 端的远程位置。这称为(-)链 DNA 转移。这种转移使长末端重复序列得以再生,这对于病毒基因组 DNA 整合到宿主染色体中至关重要。已经鉴定出许多刺激(-)链 DNA 转移的因素。在这篇综述中,我们专注于描述蛋白质-RNA 和 RNA-RNA 相互作用以及 RNA 结构特征,这些特征已知有助于逆转录中的这一步骤。

相似文献

1
Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1.
RNA Biol. 2011 Mar-Apr;8(2):230-6. doi: 10.4161/rna.8.2.14802. Epub 2011 Mar 1.
2
Strand transfer events during HIV-1 reverse transcription.
Virus Res. 2008 Jun;134(1-2):19-38. doi: 10.1016/j.virusres.2007.12.017. Epub 2008 Feb 14.
4
Specific interactions between HIV-1 nucleocapsid protein and the TAR element.
J Mol Biol. 2005 May 20;348(5):1059-77. doi: 10.1016/j.jmb.2005.03.046. Epub 2005 Apr 7.
6
Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.
Science. 1992 Nov 13;258(5085):1112-8. doi: 10.1126/science.1279806.
9
Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus.
Proc Natl Acad Sci U S A. 1979 Sep;76(9):4355-9. doi: 10.1073/pnas.76.9.4355.
10
Minimal sequence requirements of a functional human immunodeficiency virus type 1 primer binding site.
J Virol. 1994 Mar;68(3):1605-14. doi: 10.1128/JVI.68.3.1605-1614.1994.

引用本文的文献

1
Deciphering RNA G-quadruplex function during the early steps of HIV-1 infection.
Nucleic Acids Res. 2022 Nov 28;50(21):12328-12343. doi: 10.1093/nar/gkac1030.
3
5
Resolution of Specific Nucleotide Mismatches by Wild-Type and AZT-Resistant Reverse Transcriptases during HIV-1 Replication.
J Mol Biol. 2016 Jun 5;428(11):2275-2288. doi: 10.1016/j.jmb.2016.04.005. Epub 2016 Apr 10.
6
Structural Insights into the HIV-1 Minus-strand Strong-stop DNA.
J Biol Chem. 2016 Feb 12;291(7):3468-82. doi: 10.1074/jbc.M115.708099. Epub 2015 Dec 14.
7
HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA.
PLoS One. 2015 Sep 28;10(9):e0139037. doi: 10.1371/journal.pone.0139037. eCollection 2015.
9
Impairment of HIV-1 cDNA synthesis by DBR1 knockdown.
J Virol. 2014 Jun;88(12):7054-69. doi: 10.1128/JVI.00704-14. Epub 2014 Mar 26.
10
Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties.
Nucleic Acids Res. 2014 Jan;42(2):1095-110. doi: 10.1093/nar/gkt945. Epub 2013 Oct 24.

本文引用的文献

1
Sequences in the U3 region of human immunodeficiency virus 1 improve efficiency of minus strand transfer in infected cells.
Virology. 2011 Feb 20;410(2):368-74. doi: 10.1016/j.virol.2010.11.026. Epub 2010 Dec 30.
2
Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription.
RNA. 2010 Jun;16(6):1226-35. doi: 10.1261/rna.2039610. Epub 2010 Apr 29.
3
A sequence similar to tRNA 3 Lys gene is embedded in HIV-1 U3-R and promotes minus-strand transfer.
Nat Struct Mol Biol. 2010 Jan;17(1):83-9. doi: 10.1038/nsmb.1687. Epub 2009 Dec 6.
4
A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.
J Biol Chem. 2009 Dec 4;284(49):33883-93. doi: 10.1074/jbc.M109.055368. Epub 2009 Oct 12.
5
A long-range RNA-RNA interaction between the 5' and 3' ends of the HCV genome.
RNA. 2009 Sep;15(9):1740-52. doi: 10.1261/rna.1680809. Epub 2009 Jul 15.
6
Strand transfer events during HIV-1 reverse transcription.
Virus Res. 2008 Jun;134(1-2):19-38. doi: 10.1016/j.virusres.2007.12.017. Epub 2008 Feb 14.
7
RNase H activity: structure, specificity, and function in reverse transcription.
Virus Res. 2008 Jun;134(1-2):86-103. doi: 10.1016/j.virusres.2007.12.007. Epub 2008 Feb 7.
8
Proximity and branch migration mechanisms in HIV-1 minus strand strong stop DNA transfer.
J Biol Chem. 2008 Feb 8;283(6):3141-3150. doi: 10.1074/jbc.M707343200. Epub 2007 Dec 11.
9
Circularization of the HIV-1 RNA genome.
Nucleic Acids Res. 2007;35(15):5253-61. doi: 10.1093/nar/gkm564. Epub 2007 Aug 7.
10
Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages.
J Biol Chem. 2007 Apr 27;282(17):12598-609. doi: 10.1074/jbc.M700043200. Epub 2007 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验