Suppr超能文献

系统发育树的比较以及在“生命之林”中寻找中心趋势。

Comparison of phylogenetic trees and search for a central trend in the "forest of life".

作者信息

Koonin Eugene V, Puigbò Pere, Wolf Yuri I

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

J Comput Biol. 2011 Jul;18(7):917-24. doi: 10.1089/cmb.2010.0185. Epub 2011 Apr 1.

Abstract

The widespread exchange of genes among prokaryotes, known as horizontal gene transfer (HGT), is often considered to "uproot" the Tree of Life (TOL). Indeed, it is by now fully clear that genes in general possess different evolutionary histories. However, the possibility remains that the TOL concept can be reformulated and remain valid as a statistical central trend in the phylogenetic "Forest of Life" (FOL). This article describes a computational pipeline developed to chart the FOL by comparative analysis of thousands of phylogenetic trees. This analysis reveals a distinct, consistent phylogenetic signal that is particularly strong among the Nearly Universal Trees (NUTs), which correspond to genes represented in all or most of the analyzed organisms. Despite the substantial amount of apparent HGT seen even among the NUTs, these gene transfers appear to be distributed randomly and do not obscure the central tree-like trend.

摘要

原核生物之间广泛的基因交换,即水平基因转移(HGT),通常被认为会“颠覆”生命之树(TOL)。事实上,现在已经完全清楚,一般来说基因具有不同的进化历史。然而,生命之树概念仍有可能被重新阐述,并作为系统发育“生命森林”(FOL)中的统计中心趋势而继续有效。本文描述了一种通过对数千棵系统发育树进行比较分析来绘制生命森林的计算流程。该分析揭示了一种独特、一致的系统发育信号,在几乎通用的树(NUTs)中尤为强烈,这些树对应于在所有或大多数被分析生物体中都有代表的基因。尽管即使在几乎通用的树中也能看到大量明显的水平基因转移,但这些基因转移似乎是随机分布的,并没有掩盖中心的树状趋势。

相似文献

1
Comparison of phylogenetic trees and search for a central trend in the "forest of life".
J Comput Biol. 2011 Jul;18(7):917-24. doi: 10.1089/cmb.2010.0185. Epub 2011 Apr 1.
2
The phylogenetic forest and the quest for the elusive tree of life.
Cold Spring Harb Symp Quant Biol. 2009;74:205-13. doi: 10.1101/sqb.2009.74.006. Epub 2009 Aug 17.
3
The tree and net components of prokaryote evolution.
Genome Biol Evol. 2010;2:745-56. doi: 10.1093/gbe/evq062. Epub 2010 Oct 1.
4
Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life.
Methods Mol Biol. 2019;1910:241-269. doi: 10.1007/978-1-4939-9074-0_8.
5
Search for a 'Tree of Life' in the thicket of the phylogenetic forest.
J Biol. 2009;8(6):59. doi: 10.1186/jbiol159. Epub 2009 Jul 13.
7
Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.
Methods Mol Biol. 2012;856:53-79. doi: 10.1007/978-1-61779-585-5_3.
9
A New Phylogenomic Approach For Quantifying Horizontal Gene Transfer Trends in Prokaryotes.
Sci Rep. 2020 Jul 24;10(1):12425. doi: 10.1038/s41598-020-62446-5.
10
Assessing the accuracy of phylogenetic rooting methods on prokaryotic gene families.
PLoS One. 2020 May 15;15(5):e0232950. doi: 10.1371/journal.pone.0232950. eCollection 2020.

引用本文的文献

1
Rhizomal Reclassification of Living Organisms.
Int J Mol Sci. 2021 May 26;22(11):5643. doi: 10.3390/ijms22115643.
2
A New Phylogenomic Approach For Quantifying Horizontal Gene Transfer Trends in Prokaryotes.
Sci Rep. 2020 Jul 24;10(1):12425. doi: 10.1038/s41598-020-62446-5.
3
Genome Comparisons of Wild Isolates of Caulobacter crescentus Reveal Rates of Inversion and Horizontal Gene Transfer.
Curr Microbiol. 2019 Feb;76(2):159-167. doi: 10.1007/s00284-018-1606-x. Epub 2018 Nov 27.
4
Reconstruction of real and simulated phylogenies based on quartet plurality inference.
BMC Genomics. 2018 Aug 13;19(Suppl 6):570. doi: 10.1186/s12864-018-4921-5.
5
The Rhizome of Lokiarchaeota Illustrates the Mosaicity of Archaeal Genomes.
Genome Biol Evol. 2017 Oct 1;9(10):2635-2639. doi: 10.1093/gbe/evx208.
6
Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.
J Comput Biol. 2017 May;24(5):422-435. doi: 10.1089/cmb.2016.0204. Epub 2017 Feb 8.
7
Ordered orthology as a tool in prokaryotic evolutionary inference.
Mob Genet Elements. 2015 Dec 30;6(6):e1120576. doi: 10.1080/2159256X.2015.1120576. eCollection 2016.
8
The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data.
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140323. doi: 10.1098/rstb.2014.0323.
9
Ranking of Prokaryotic Genomes Based on Maximization of Sortedness of Gene Lengths.
J Data Mining Genomics Proteomics. 2014;5(1). doi: 10.4172/2153-0602.1000151.
10
Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.
J Biosci. 2015 Jun;40(2):465-72. doi: 10.1007/s12038-015-9514-8.

本文引用的文献

1
Search for a 'Tree of Life' in the thicket of the phylogenetic forest.
J Biol. 2009;8(6):59. doi: 10.1186/jbiol159. Epub 2009 Jul 13.
2
Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10039-44. doi: 10.1073/pnas.0800679105. Epub 2008 Jul 16.
3
Pattern pluralism and the Tree of Life hypothesis.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2043-9. doi: 10.1073/pnas.0610699104. Epub 2007 Jan 29.
4
Eukaryotic evolution, changes and challenges.
Nature. 2006 Mar 30;440(7084):623-30. doi: 10.1038/nature04546.
5
Horizontal gene transfer, genome innovation and evolution.
Nat Rev Microbiol. 2005 Sep;3(9):679-87. doi: 10.1038/nrmicro1204.
6
Genome trees and the tree of life.
Trends Genet. 2002 Sep;18(9):472-9. doi: 10.1016/s0168-9525(02)02744-0.
7
Phylogenetic classification and the universal tree.
Science. 1999 Jun 25;284(5423):2124-9. doi: 10.1126/science.284.5423.2124.
8
Ribosomal RNA phylogeny and the primary lines of evolutionary descent.
Cell. 1986 May 9;45(3):325-6. doi: 10.1016/0092-8674(86)90315-6.
9
Bacterial evolution.
Microbiol Rev. 1987 Jun;51(2):221-71. doi: 10.1128/mr.51.2.221-271.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验