Suppr超能文献

炎症与神经系统:感染性角膜炎患者角膜中的联系。

Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis.

机构信息

Ocular Surface Imaging Center, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.

出版信息

Invest Ophthalmol Vis Sci. 2011 Jul 11;52(8):5136-43. doi: 10.1167/iovs.10-7048.

Abstract

PURPOSE

To study the density and morphologic characteristics of epithelial dendritic cells, as correlated to subbasal corneal nerve alterations in acute infectious keratitis (IK) by in vivo confocal microscopy (IVCM).

METHODS

IVCM of the central cornea was performed prospectively in 53 eyes with acute bacterial (n = 23), fungal (n = 13), and Acanthamoeba (n = 17) keratitis, and in 20 normal eyes, by using laser in vivo confocal microscopy. Density and morphology of dendritic-shaped cells (DCs) of the central cornea, corneal nerve density, nerve numbers, branching, and tortuosity were assessed and correlated. It should be noted that due to the "in vivo" nature of the study, the exact identity of these DCs cannot be specified, as they could be monocytes or tissue macrophages, but most likely dendritic cells.

RESULTS

IVCM revealed the presence of central corneal DCs in all patients and controls. The mean DC density was significantly higher in patients with bacterial (441.1 ± 320.5 cells/mm(2); P < 0.0001), fungal (608.9 ± 812.5 cells/mm(2); P < 0.0001), and Acanthamoeba keratitis (1000.2 ± 1090.3 cells/mm(2); P < 0.0001) compared with controls (49.3 ± 39.6 cells/mm(2)). DCs had an increased size and dendrites in patients with IK. Corneal nerves were significantly reduced in eyes with IK compared with controls across all subgroups, including nerve density (674.2 ± 976.1 vs. 3913.9 ± 507.4 μm/frame), total nerve numbers (2.7 ± 3.9 vs. 20.2 ± 3.3), main trunks (1.5 ± 2.2 vs. 6.9 ± 1.1), and branching (1.2 ± 2.0 vs. 13.5 ± 3.1; P < 0.0001). A strong association between the diminishment of corneal nerves and the increase of DC density was observed (r = -0.44; P < 0.0005).

CONCLUSIONS

IVCM reveals an increased density and morphologic changes of central epithelial DCs in infectious keratitis. There is a strong and significant correlation between the increase in DC numbers and the decreased subbasal corneal nerves, suggesting a potential interaction between the immune and nervous system in the cornea.

摘要

目的

通过活体共聚焦显微镜(IVCM)研究急性感染性角膜炎(IK)中基底下角膜神经改变与上皮树突状细胞(DC)密度和形态特征的关系。

方法

前瞻性地对 53 只患有急性细菌性(n=23)、真菌性(n=13)和棘阿米巴性(n=17)角膜炎的眼睛以及 20 只正常眼睛进行中央角膜 IVCM,使用激光活体共聚焦显微镜。评估和相关联中央角膜 DC 密度、角膜神经密度、神经数量、分支和扭曲的形态和形态。需要注意的是,由于研究的“体内”性质,这些 DC 的确切身份无法确定,因为它们可能是单核细胞或组织巨噬细胞,但很可能是树突状细胞。

结果

IVCM 显示所有患者和对照组均存在中央角膜 DC。与对照组(49.3±39.6 个细胞/mm²)相比,细菌性(441.1±320.5 个细胞/mm²;P<0.0001)、真菌性(608.9±812.5 个细胞/mm²;P<0.0001)和棘阿米巴性角膜炎患者的平均 DC 密度明显更高(1000.2±1090.3 个细胞/mm²;P<0.0001)。IK 患者的 DC 大小和树突增加。与对照组相比,所有亚组的 IK 眼的角膜神经均明显减少,包括神经密度(674.2±976.1 vs. 3913.9±507.4μm/帧)、总神经数量(2.7±3.9 vs. 20.2±3.3)、主干(1.5±2.2 vs. 6.9±1.1)和分支(1.2±2.0 vs. 13.5±3.1;P<0.0001)。观察到角膜神经减少与 DC 密度增加之间存在很强的关联(r=-0.44;P<0.0005)。

结论

IVCM 显示在感染性角膜炎中中央上皮 DC 的密度和形态发生变化增加。DC 数量的增加与基底下角膜神经的减少之间存在很强且显著的相关性,这表明角膜中免疫系统和神经系统之间可能存在相互作用。

相似文献

1
Inflammation and the nervous system: the connection in the cornea in patients with infectious keratitis.
Invest Ophthalmol Vis Sci. 2011 Jul 11;52(8):5136-43. doi: 10.1167/iovs.10-7048.
2
Degeneration and Regeneration of Subbasal Corneal Nerves after Infectious Keratitis: A Longitudinal In Vivo Confocal Microscopy Study.
Ophthalmology. 2015 Nov;122(11):2200-9. doi: 10.1016/j.ophtha.2015.06.047. Epub 2015 Aug 6.
3
Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study.
Ophthalmology. 2010 Oct;117(10):1930-6. doi: 10.1016/j.ophtha.2010.07.010. Epub 2010 Sep 1.
5
Corneal nerve alterations in acute Acanthamoeba and fungal keratitis: an in vivo confocal microscopy study.
Eye (Lond). 2012 Jan;26(1):126-32. doi: 10.1038/eye.2011.270. Epub 2011 Nov 11.

引用本文的文献

3
Alterations in Corneal Nerve Structure and Function in Prediabetes.
J Diabetes Res. 2025 Apr 12;2025:4586856. doi: 10.1155/jdr/4586856. eCollection 2025.
4
Corneal Alterations in Patients with Osteogenesis Imperfecta: An in vivo Corneal Confocal Microscopy Study.
Clin Ophthalmol. 2024 Dec 27;18:3977-3988. doi: 10.2147/OPTH.S470183. eCollection 2024.
5
Subclinical corneal inflammation and subbasal nerve alterations in keratoconus detected by in vivo confocal microscopy: a cross-sectional study.
Graefes Arch Clin Exp Ophthalmol. 2025 Mar;263(3):761-769. doi: 10.1007/s00417-024-06664-x. Epub 2024 Nov 9.
8
JR5558 mice are a reliable model to investigate subretinal fibrosis.
Sci Rep. 2024 Aug 13;14(1):18752. doi: 10.1038/s41598-024-66068-z.
9
Confocal Microscopy of the Cornea in Aqueous-Deficient Dry Eye Disease-A Literature Review.
Diagnostics (Basel). 2024 Jul 26;14(15):1613. doi: 10.3390/diagnostics14151613.
10
Corneal Stroma Analysis and Related Ocular Manifestations in Recovered COVID-19 Patients.
Invest Ophthalmol Vis Sci. 2024 May 1;65(5):14. doi: 10.1167/iovs.65.5.14.

本文引用的文献

1
In vivo confocal microscopy of corneal nerves: analysis and clinical correlation.
Semin Ophthalmol. 2010 Sep-Nov;25(5-6):171-7. doi: 10.3109/08820538.2010.518133.
2
Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study.
Ophthalmology. 2010 Oct;117(10):1930-6. doi: 10.1016/j.ophtha.2010.07.010. Epub 2010 Sep 1.
3
In vivo confocal microscopic evaluation of morphologic changes and dendritic cell distribution in pterygium.
Am J Ophthalmol. 2010 Nov;150(5):650-655.e1. doi: 10.1016/j.ajo.2010.05.025. Epub 2010 Aug 5.
4
Mapping the entire human corneal nerve architecture.
Exp Eye Res. 2010 Oct;91(4):513-23. doi: 10.1016/j.exer.2010.07.007. Epub 2010 Jul 27.
5
VIP promotes resistance in the Pseudomonas aeruginosa-infected cornea by modulating adhesion molecule expression.
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5776-82. doi: 10.1167/iovs.09-4917. Epub 2010 Jun 30.
6
Stratification of Antigen-presenting Cells within the Normal Cornea.
Ophthalmol Eye Dis. 2009 Nov 25;1:45-54. doi: 10.4137/oed.s2813.
7
Neuropeptides: keeping the balance between pathogen immunity and immune tolerance.
Curr Opin Pharmacol. 2010 Aug;10(4):473-81. doi: 10.1016/j.coph.2010.03.003.
8
An in vivo confocal microscopy and impression cytology evaluation of pterygium activity.
Cornea. 2010 Apr;29(4):392-9. doi: 10.1097/ICO.0b013e3181bd44ce.
9
Keeping the balance between immune tolerance and pathogen immunity with endogenous neuropeptides.
Neuroimmunomodulation. 2010;17(3):161-4. doi: 10.1159/000258713. Epub 2010 Feb 4.
10
Confocal microscopy in ophthalmology.
Am J Ophthalmol. 2009 Nov;148(5):639-46. doi: 10.1016/j.ajo.2009.06.022. Epub 2009 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验