Suppr超能文献

高效 miRNA 介导的小鼠和人体细胞重编程为多能性。

Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.

机构信息

Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell Stem Cell. 2011 Apr 8;8(4):376-88. doi: 10.1016/j.stem.2011.03.001.

Abstract

Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPSCs display similar characteristics to Oct4/Sox2/Klf4/Myc-iPSCs, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency.

摘要

基于转录因子的细胞重编程为将体细胞转化为多能状态开辟了道路,但由于需要转录因子和相对低效的过程,它面临着限制。我们在这里表明,miR302/367 簇的表达可以快速有效地将小鼠和人类体细胞重编程为 iPSC 状态,而不需要外源性转录因子。这种基于 miRNA 的重编程方法比标准的 Oct4/Sox2/Klf4/Myc 介导的方法效率高两个数量级。小鼠和人类的 miR302/367 iPSC 表现出与 Oct4/Sox2/Klf4/Myc-iPSC 相似的特征,包括多能性标记物的表达、畸胎瘤的形成,以及对于小鼠细胞,嵌合体的贡献和生殖系的贡献。我们发现 miR367 的表达是 miR302/367 介导的重编程所必需的,并且激活了 Oct4 基因的表达,而抑制 Hdac2 也是必需的。因此,我们的数据表明 miRNA 和 Hdac 介导的途径可以以一种强大的方式协同作用,将体细胞重编程为多能性。

相似文献

1
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
Cell Stem Cell. 2011 Apr 8;8(4):376-88. doi: 10.1016/j.stem.2011.03.001.
3
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.
4
Virus-free induction of pluripotency and subsequent excision of reprogramming factors.
Nature. 2009 Apr 9;458(7239):771-5. doi: 10.1038/nature07864. Epub 2009 Mar 1.
5
Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4.
Stem Cell Res. 2017 Dec;25:88-97. doi: 10.1016/j.scr.2017.10.014. Epub 2017 Oct 26.
6
NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
Nat Cell Biol. 2018 Aug;20(8):900-908. doi: 10.1038/s41556-018-0136-x. Epub 2018 Jul 16.
7
Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4.
Cell Rep. 2019 Nov 12;29(7):1986-2000.e8. doi: 10.1016/j.celrep.2019.10.026.
8
Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency.
Cell Stem Cell. 2018 Sep 6;23(3):396-411.e8. doi: 10.1016/j.stem.2018.08.001. Epub 2018 Aug 23.
9
Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon.
Nat Methods. 2009 May;6(5):363-9. doi: 10.1038/nmeth.1323. Epub 2009 Mar 31.
10
HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks.
PLoS One. 2012;7(11):e48533. doi: 10.1371/journal.pone.0048533. Epub 2012 Nov 15.

引用本文的文献

1
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
2
Pluripotent stem cell-derived extracellular vesicles for systemic immune modulation in diabetes therapy.
Res Sq. 2025 Jun 10:rs.3.rs-6415252. doi: 10.21203/rs.3.rs-6415252/v1.
3
Application of induced pluripotent stem cells in the conservation of endangered animals.
Stem Cell Res Ther. 2025 May 28;16(1):261. doi: 10.1186/s13287-025-04392-5.
4
A comprehensive analysis of induced pluripotent stem cell (iPSC) production and applications.
Front Cell Dev Biol. 2025 May 8;13:1593207. doi: 10.3389/fcell.2025.1593207. eCollection 2025.
5
Current Development of iPSC-Based Modeling in Neurodegenerative Diseases.
Int J Mol Sci. 2025 Apr 16;26(8):3774. doi: 10.3390/ijms26083774.
6
Genes as Genome Stabilizers in Pluripotent Stem Cells.
Adv Exp Med Biol. 2025;1483:21-47. doi: 10.1007/5584_2025_853.
8
Advances in the Study of Pluripotent Stem Cells in Livestock.
Cell Prolif. 2025 Feb 24:e70008. doi: 10.1111/cpr.70008.

本文引用的文献

1
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.
Cell Stem Cell. 2010 Nov 5;7(5):618-30. doi: 10.1016/j.stem.2010.08.012. Epub 2010 Sep 30.
2
Patient-specific induced pluripotent stem-cell models for long-QT syndrome.
N Engl J Med. 2010 Oct 7;363(15):1397-409. doi: 10.1056/NEJMoa0908679. Epub 2010 Jul 21.
3
Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells.
Cell Stem Cell. 2010 Jul 2;7(1):11-4. doi: 10.1016/j.stem.2010.06.003.
4
A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells.
Nat Protoc. 2010 Apr;5(4):647-60. doi: 10.1038/nprot.2010.9. Epub 2010 Mar 11.
6
Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale.
Cell Cycle. 2010 Mar 1;9(5):937-46. doi: 10.4161/cc.9.5.10869. Epub 2010 Mar 6.
7
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells.
Nature. 2010 Feb 4;463(7281):621-6. doi: 10.1038/nature08725. Epub 2010 Jan 6.
8
Reprogramming towards pluripotency requires AID-dependent DNA demethylation.
Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.
10
Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors.
FASEB J. 2010 Mar;24(3):700-11. doi: 10.1096/fj.09-139477. Epub 2009 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验