Cuban Neuroscience Center, Ave 25 #15202 esquina 158, Cubanacan, Playa, Cuba.
Neuroimage. 2011 Sep 15;58(2):339-61. doi: 10.1016/j.neuroimage.2011.03.058. Epub 2011 Apr 6.
This is the final paper in a Comments and Controversies series dedicated to "The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution". We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener-Akaike-Granger-Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments.
这是一篇评论和争议系列的最后一篇论文,专门讨论“使用 fMRI 识别大脑中的相互作用网络:模型选择、因果关系和解卷积”。我们认为,发现有效连接取决于具有生物物理感知观测和状态方程的状态空间模型。这些模型必须具有未知参数的先验,并提供模型可识别性的检查。我们考虑了动态因果建模、格兰杰因果建模和其他方法之间的异同。我们根据贝叶斯依赖图和维纳-艾克-格兰杰-施韦德影响度量,在过去和当前的统计因果建模之间建立联系。我们表明,该领域面临的一些挑战有有希望的解决方案,并推测未来的发展。