Suppr超能文献

铜绿假单胞菌中全局性调控因子 CbrB 对启动子的识别与激活

Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.

机构信息

Département de Microbiologie Fondamentale, Université de Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland.

出版信息

J Bacteriol. 2011 Jun;193(11):2784-92. doi: 10.1128/JB.00164-11. Epub 2011 Apr 8.

Abstract

In Pseudomonas aeruginosa, the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ(54) RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA. As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.

摘要

在铜绿假单胞菌中,CbrA/CbrB 双组分系统在维持碳氮平衡以及在生长碳源方面发挥着重要作用,这些碳源的能量不如首选的二羧酸基质有利。CbrA/CbrB 系统驱动小 RNA CrcZ 的表达,CrcZ 拮抗 RNA 结合蛋白 Crc 的抑制作用。二羧酸似乎通过抑制 CbrA/CbrB 系统的活性引起碳分解代谢物抑制,导致 crcZ 表达减少。在这里,我们鉴定了一个保守的回文核苷酸序列,该序列存在于 CbrB 和 σ(54)RNA 聚合酶正向调控的启动子的上游激活序列 (UAS) 中,特别是在 crcZ 启动子的 UAS 中。通过 crcZ 启动子的突变分析和使用 crcZ 启动子片段和纯化的 N 端截断的 CbrB 蛋白的电泳迁移率变动分析,从体内和体外获得了 CbrB 识别该回文序列的证据。整合宿主因子 (IHF) 是 crcZ 表达所必需的。CbrB 还激活了 lipA(脂肪酶)启动子,但效果不那么明显,显然是通过与 lipA 的 UAS 中的类似但不太保守的回文序列相互作用。正如预期的那样,琥珀酸盐导致 CbrB 依赖的碳分解代谢物抑制 lipA 启动子。基于这些结果和之前发表的数据,提出了一个 CbrB 识别序列的共识。该序列与氮控制相关的 NtrC 识别序列具有相似性。

相似文献

1
Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
J Bacteriol. 2011 Jun;193(11):2784-92. doi: 10.1128/JB.00164-11. Epub 2011 Apr 8.
2
Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida.
Mol Microbiol. 2013 Jul;89(1):189-205. doi: 10.1111/mmi.12270. Epub 2013 Jun 11.
4
Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71. doi: 10.1073/pnas.0910308106.
5
CbrAB-dependent regulation of pcnB, a poly(A) polymerase gene involved in polyadenylation of RNA in Pseudomonas fluorescens.
Environ Microbiol. 2010 Jun;12(6):1674-83. doi: 10.1111/j.1462-2920.2010.02228.x. Epub 2010 May 7.
6
8
The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida.
PLoS One. 2018 Dec 17;13(12):e0209191. doi: 10.1371/journal.pone.0209191. eCollection 2018.
9
Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.
RNA. 2016 Dec;22(12):1902-1917. doi: 10.1261/rna.058313.116. Epub 2016 Oct 24.
10
Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI.
Microbiology (Reading). 2017 Sep;163(9):1343-1354. doi: 10.1099/mic.0.000502. Epub 2017 Aug 9.

引用本文的文献

1
Expression regulation of bacterial lipase genes: a review.
Front Microbiol. 2025 May 21;16:1592059. doi: 10.3389/fmicb.2025.1592059. eCollection 2025.
2
3
Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2313208120. doi: 10.1073/pnas.2313208120. Epub 2023 Oct 17.
4
The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine.
FEMS Microbiol Lett. 2023 Jan 17;370. doi: 10.1093/femsle/fnad077.
5
Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding.
EMBO J. 2023 Feb 1;42(3):e111129. doi: 10.15252/embj.2022111129. Epub 2022 Dec 12.
6
Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis.
Adv Exp Med Biol. 2022;1386:371-395. doi: 10.1007/978-3-031-08491-1_14.
7
Rewiring of Gene Expression in During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq.
Front Microbiol. 2022 Jun 23;13:919539. doi: 10.3389/fmicb.2022.919539. eCollection 2022.
9
The Regulatory Functions of σ Factor in Phytopathogenic Bacteria.
Int J Mol Sci. 2021 Nov 24;22(23):12692. doi: 10.3390/ijms222312692.
10
Specific and Global RNA Regulators in .
Int J Mol Sci. 2021 Aug 11;22(16):8632. doi: 10.3390/ijms22168632.

本文引用的文献

2
Mechanisms for activating bacterial RNA polymerase.
FEMS Microbiol Rev. 2010 Sep;34(5):611-27. doi: 10.1111/j.1574-6976.2010.00239.x. Epub 2010 Jun 7.
3
The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa.
Environ Microbiol. 2010 Dec;12(12):3196-212. doi: 10.1111/j.1462-2920.2010.02292.x.
6
Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment.
FEMS Microbiol Rev. 2010 Sep;34(5):658-84. doi: 10.1111/j.1574-6976.2010.00218.x. Epub 2010 Mar 10.
7
Receiver domain structure and function in response regulator proteins.
Curr Opin Microbiol. 2010 Apr;13(2):142-9. doi: 10.1016/j.mib.2010.01.015. Epub 2010 Mar 6.
8
Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71. doi: 10.1073/pnas.0910308106.
9
Genetic determinants of Pseudomonas aeruginosa biofilm establishment.
Microbiology (Reading). 2010 Feb;156(Pt 2):431-441. doi: 10.1099/mic.0.033290-0. Epub 2009 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验