Suppr超能文献

双歧杆菌中的碳水化合物代谢。

Carbohydrate metabolism in Bifidobacteria.

机构信息

Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Western Road, Cork, Ireland.

出版信息

Genes Nutr. 2011 Aug;6(3):285-306. doi: 10.1007/s12263-010-0206-6. Epub 2011 Feb 16.

Abstract

Members of the genus Bifidobacterium can be found as components of the gastrointestinal microbiota, and are believed to play an important role in maintaining and promoting human health by eliciting a number of beneficial properties. Bifidobacteria can utilize a diverse range of dietary carbohydrates that escape degradation in the upper parts of the intestine, many of which are plant-derived oligo- and polysaccharides. The gene content of a bifidobacterial genome reflects this apparent metabolic adaptation to a complex carbohydrate-rich gastrointestinal tract environment as it encodes a large number of predicted carbohydrate-modifying enzymes. Different bifidobacterial strains may possess different carbohydrate utilizing abilities, as established by a number of studies reviewed here. Carbohydrate-degrading activities described for bifidobacteria and their relevance to the deliberate enhancement of number and/or activity of bifidobacteria in the gut are also discussed in this review.

摘要

双歧杆菌属的成员可以作为胃肠道微生物群的组成部分,被认为通过产生许多有益的特性在维持和促进人类健康方面发挥着重要作用。双歧杆菌可以利用多种在肠道上部未被降解的膳食纤维,其中许多是植物来源的低聚糖和多糖。双歧杆菌基因组的基因含量反映了其对富含复杂碳水化合物的胃肠道环境的明显代谢适应,因为它编码了大量预测的碳水化合物修饰酶。正如这里综述的多项研究所证实的那样,不同的双歧杆菌菌株可能具有不同的碳水化合物利用能力。本文还讨论了双歧杆菌的碳水化合物降解活性及其与肠道中双歧杆菌数量和/或活性的有意增强的相关性。

相似文献

1
Carbohydrate metabolism in Bifidobacteria.
Genes Nutr. 2011 Aug;6(3):285-306. doi: 10.1007/s12263-010-0206-6. Epub 2011 Feb 16.
2
Plant Glycan Metabolism by Bifidobacteria.
Front Microbiol. 2021 Feb 4;12:609418. doi: 10.3389/fmicb.2021.609418. eCollection 2021.
4
Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.
BMC Microbiol. 2015 Mar 1;15:54. doi: 10.1186/s12866-015-0362-3.
5
Bifidobacteria and Their Role as Members of the Human Gut Microbiota.
Front Microbiol. 2016 Jun 15;7:925. doi: 10.3389/fmicb.2016.00925. eCollection 2016.
6
The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review.
Int J Biol Macromol. 2021 Jan 15;167:1329-1337. doi: 10.1016/j.ijbiomac.2020.11.087. Epub 2020 Nov 14.
10
Comparative genomics of the gut commensal Bifidobacterium bifidum reveals adaptation to carbohydrate utilization.
Biochem Biophys Res Commun. 2021 Apr 2;547:155-161. doi: 10.1016/j.bbrc.2021.02.046. Epub 2021 Feb 19.

引用本文的文献

3
Temporal response patterns of human gut microbiota to dietary fiber.
Imeta. 2025 May 10;4(4):e70046. doi: 10.1002/imt2.70046. eCollection 2025 Aug.
4
Inhibitory efficacy, production dynamics, and characterization of postbiotics of lactic acid bacteria.
BMC Microbiol. 2025 Aug 6;25(1):485. doi: 10.1186/s12866-025-04123-z.
5
Complete Genome and Characterization Analysis of a Strain Isolated from Wild Pigs ().
Microorganisms. 2025 Jul 16;13(7):1666. doi: 10.3390/microorganisms13071666.
6
Recent advances in the study of the properties and applications of lactic acid bacteria.
World J Microbiol Biotechnol. 2025 Jul 28;41(8):287. doi: 10.1007/s11274-025-04499-0.
10
The Gut Microbiome as a Key Determinant of the Heritability of Body Mass Index.
Nutrients. 2025 May 18;17(10):1713. doi: 10.3390/nu17101713.

本文引用的文献

1
Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003.
Microb Biotechnol. 2011 May;4(3):403-16. doi: 10.1111/j.1751-7915.2010.00218.x. Epub 2010 Oct 21.
2
A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides.
Microb Biotechnol. 2009 May;2(3):333-42. doi: 10.1111/j.1751-7915.2008.00072.x. Epub 2008 Dec 5.
3
Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003.
Microb Biotechnol. 2009 May;2(3):321-32. doi: 10.1111/j.1751-7915.2008.00071.x. Epub 2008 Dec 3.
4
Ribose utilization by the human commensal Bifidobacterium breve UCC2003.
Microb Biotechnol. 2010 May;3(3):311-23. doi: 10.1111/j.1751-7915.2009.00152.x. Epub 2009 Oct 15.
5
Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9. doi: 10.1073/pnas.1011100107. Epub 2010 Oct 25.
6
Highly efficient chemoenzymatic synthesis of β1-3-linked galactosides.
Chem Commun (Camb). 2010 Oct 28;46(40):7507-9. doi: 10.1039/c0cc02850a. Epub 2010 Sep 10.
7
Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6. doi: 10.1073/pnas.1005963107. Epub 2010 Aug 2.
8
Human milk glycobiome and its impact on the infant gastrointestinal microbiota.
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4653-8. doi: 10.1073/pnas.1000083107. Epub 2010 Aug 2.
9
Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract.
Int J Syst Evol Microbiol. 2011 Jun;61(Pt 6):1315-1321. doi: 10.1099/ijs.0.022525-0. Epub 2010 Jul 23.
10
The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats.
Clin Nutr. 2010 Dec;29(6):832-9. doi: 10.1016/j.clnu.2010.05.005. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验