Suppr超能文献

通过堵塞蛋白质-蛋白质界面水口袋来稳定蛋白质纳米笼。

Stabilization of a protein nanocage through the plugging of a protein-protein interfacial water pocket.

机构信息

Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.

出版信息

Biochemistry. 2011 May 17;50(19):4029-37. doi: 10.1021/bi200207w. Epub 2011 Apr 26.

Abstract

The unique structural properties of the ferritin protein cages have provided impetus to focus on the methodical study of these self-assembling nanosystems. Among these proteins, Escherichia coli bacterioferritin (EcBfr), although architecturally very similar to other members of the family, shows structural instability and an incomplete self-assembly behavior by populating two oligomerization states. Through computational analysis and comparison to its homologues, we have found that this protein has a smaller than average dimeric interface on its 2-fold symmetry axis mainly because of the existence of an interfacial water pocket centered around two water-bridged asparagine residues. To investigate the possibility of engineering EcBfr for modified structural stability, we have used a semiempirical computational method to virtually explore the energy differences of the 480 possible mutants at the dimeric interface relative to that of wild-type EcBfr. This computational study also converged on the water-bridged asparagines. Replacing these two asparagines with hydrophobic amino acids resulted in proteins that folded into α-helical monomers and assembled into cages as evidenced by circular dichroism and transmission electron microscopy. Both thermal and chemical denaturation confirmed that, in all cases, these proteins, in agreement with the calculations, possessed increased stability. One of the three mutations shifts the population in favor of the higher-order oligomerization state in solution as evidenced by both size exclusion chromatography and native gel electrophoresis. These results taken together suggest that our low-level design was successful and that it may be possible to apply the strategy of targeting water pockets at protein--protein interfaces to other protein cage and self-assembling systems. More generally, this study further demonstrates the power of jointly employing in silico and in vitro techniques to understand and enhance biostructural energetics.

摘要

铁蛋白蛋白笼的独特结构特性促使人们关注这些自组装纳米系统的系统研究。在这些蛋白质中,尽管大肠杆菌菌铁蛋白(EcBfr)在结构上与该家族的其他成员非常相似,但它表现出结构不稳定性和不完全的自组装行为,存在两种寡聚化状态。通过计算分析和与同源物的比较,我们发现该蛋白质在其 2 倍对称轴上的二聚体界面小于平均大小,主要是因为存在一个以两个通过水分子桥接的天冬酰胺残基为中心的界面水口袋。为了研究工程 EcBfr 以获得改良的结构稳定性的可能性,我们使用半经验计算方法虚拟探索了二聚体界面上 480 个可能突变相对于野生型 EcBfr 的能量差异。这项计算研究还集中在通过水分子桥接的天冬酰胺上。用疏水性氨基酸取代这两个天冬酰胺会导致蛋白质折叠成α-螺旋单体,并组装成笼,这一点可以通过圆二色性和透射电子显微镜证明。热变性和化学变性都证实,在所有情况下,这些蛋白质都与计算结果一致,具有更高的稳定性。三种突变中的一种使溶液中的高级寡聚化状态的比例偏向于有利于溶液中的高级寡聚化状态,这一点可以通过排阻色谱和天然凝胶电泳证明。这些结果表明,我们的低水平设计是成功的,并且可能有可能将靶向蛋白质-蛋白质界面水口袋的策略应用于其他蛋白质笼和自组装系统。更一般地说,这项研究进一步证明了联合使用计算和体外技术来理解和增强生物结构能量的强大功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验