Aygün O, Grewal S I S
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
Cold Spring Harb Symp Quant Biol. 2010;75:259-67. doi: 10.1101/sqb.2010.75.055. Epub 2011 Apr 18.
In eukaryotic genomes, heterochromatin regulates various chromosomal processes including suppression of transcription and illegitimate recombination as well as proper segregation of chromosomes during cell division. Recent studies using the fission yeast Schizosaccharomyces pombe model system have revealed a complex interplay among RNA polymerase II transcription, RNAi machinery, and factors involved in posttranslational modifications of histones that are critical for the assembly and maintenance of heterochromatin. Heterochromatin proteins targeted to specific sites in the genome can spread across extended chromosomal domains and mediate epigenetic genome control by providing a recruitment platform for various factors including chromatin-modifying activities. In this chapter, we discuss mechanisms of heterochromatin assembly in fission yeast and highlight emerging evidence suggesting the involvement of heterochromatin factors in the suppression of noncoding RNAs across the genome.
在真核生物基因组中,异染色质调控着各种染色体过程,包括转录抑制、异常重组以及细胞分裂过程中染色体的正确分离。最近利用裂殖酵母粟酒裂殖酵母模型系统进行的研究揭示了RNA聚合酶II转录、RNA干扰机制以及参与组蛋白翻译后修饰的因子之间复杂的相互作用,这些对于异染色质的组装和维持至关重要。靶向基因组特定位点的异染色质蛋白可以扩散到延伸的染色体结构域,并通过为包括染色质修饰活性在内的各种因子提供募集平台来介导表观遗传基因组控制。在本章中,我们将讨论裂殖酵母中异染色质组装的机制,并强调新出现的证据,这些证据表明异染色质因子参与了全基因组非编码RNA的抑制。