Suppr超能文献

成瘾与大脑奖赏及抗奖赏通路。

Addiction and brain reward and antireward pathways.

作者信息

Gardner Eliot L

机构信息

Neuropsychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Md., USA.

出版信息

Adv Psychosom Med. 2011;30:22-60. doi: 10.1159/000324065. Epub 2011 Apr 19.

Abstract

Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of etiology holds very well for addiction. Addiction appears to correlate with a hypodopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are (a) reexposure to addictive drugs, (b) stress, and (c) reexposure to environmental cues (people, places, things) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves (a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter corticotrophin-releasing factor, and (b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising.

摘要

成瘾性药物的共同特点是,实验动物会自愿自行服用(通常是热切地),并且它们会增强大脑奖赏回路的功能(产生吸毒者所追求的“快感”)。核心奖赏回路由一个“串联”回路组成,该回路通过内侧前脑束连接腹侧被盖区、伏隔核和腹侧苍白球。尽管最初认为这些回路只是简单地编码享乐基调的设定点,但现在认为它们在功能上要复杂得多,还编码注意力、奖赏预期、奖赏预期的证伪以及动机激励。这些回路中的“享乐失调”可能导致成瘾。这个奖赏回路中的“第二阶段”多巴胺能成分是关键的对成瘾性药物敏感的成分。所有成瘾性药物的共同特点是,它们会增强(直接或间接甚至经突触)伏隔核中的多巴胺能奖赏突触功能。药物自我给药受伏隔核多巴胺水平的调节,其目的是将伏隔核多巴胺维持在特定的升高范围内(以维持所需的享乐水平)。对于某些类别的成瘾性药物(如阿片类药物),长期使用会产生对欣快感的耐受性。使用后烦躁不安随后会主导奖赏回路的享乐基调,成瘾者不再为了获得快感而使用药物,而只是为了恢复正常(“戒毒”)。介导成瘾性药物愉悦效果的脑回路在解剖学、神经生理学和神经化学上与介导身体依赖的脑回路不同,也与介导渴望和复发的脑回路不同。在对药物成瘾的易感性方面存在重要的基因变异,但压力和社会挫败等环境因素也会以某种方式改变大脑奖赏机制,从而使人易患成瘾症。简而言之,病因学的“生物 - 心理 - 社会”模型在成瘾问题上非常适用。成瘾似乎与大脑奖赏回路内的多巴胺能功能障碍状态有关。对人类的神经影像学研究为这一假设提供了支持。可靠的证据还表明血清素能、阿片样物质、内源性大麻素、GABA能和谷氨酸能机制与成瘾有关。至关重要的是,药物成瘾从偶尔的娱乐性使用发展为冲动性使用,再发展为习惯性强迫性使用。这与从奖赏驱动到习惯驱动的觅药行为的转变相关。这种行为转变与从腹侧纹状体(伏隔核)到背侧纹状体对觅药行为控制的神经解剖学转变相关。三组经典的渴望和复发触发因素是:(a)再次接触成瘾性药物,(b)压力,以及(c)再次接触先前与吸毒行为相关的环境线索(人、地点、事物)。药物引发的复发涉及伏隔核和神经递质多巴胺。压力引发的复发涉及(a)杏仁核中央核、终纹床核和神经递质促肾上腺皮质激素释放因子,以及(b)脑干的外侧被盖去甲肾上腺素能核和神经递质去甲肾上腺素。线索引发的复发涉及杏仁核基底外侧核、海马体和神经递质谷氨酸。目前,对成瘾性药物在大脑中作用的神经解剖学、神经生理学、神经化学和神经药理学的了解正在产生多种药物成瘾的药物治疗策略,其中一些看起来很有前景。

相似文献

1
Addiction and brain reward and antireward pathways.
Adv Psychosom Med. 2011;30:22-60. doi: 10.1159/000324065. Epub 2011 Apr 19.
4
Drug addiction. Part II. Neurobiology of addiction.
Pol J Pharmacol. 2001 Jul-Aug;53(4):303-17.
5
Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction.
Psychopharmacology (Berl). 2017 May;234(9-10):1315-1332. doi: 10.1007/s00213-016-4484-6. Epub 2017 Jan 3.
6
Addictive potential of cannabinoids: the underlying neurobiology.
Chem Phys Lipids. 2002 Dec 31;121(1-2):267-90. doi: 10.1016/s0009-3084(02)00162-7.
7
The psychology and neurobiology of addiction: an incentive-sensitization view.
Addiction. 2000 Aug;95 Suppl 2:S91-117. doi: 10.1080/09652140050111681.
8
Drugs of abuse and the brain.
Proc Assoc Am Physicians. 1999 Mar-Apr;111(2):99-108. doi: 10.1046/j.1525-1381.1999.09218.x.
9
Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction.
J Reward Defic Syndr. 2015;1(3):95-104. doi: 10.17756/jrds.2015-016. Epub 2015 Oct 23.
10
Relapse to drug-seeking: neural and molecular mechanisms.
Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):49-60. doi: 10.1016/s0376-8716(98)00065-9.

引用本文的文献

2
Imaging of brain electric field networks with spatially resolved EEG.
Elife. 2025 Jun 5;13:RP100123. doi: 10.7554/eLife.100123.
5
Disruptive effects of d-amphetamine on conditioned sexual inhibition in the male rat.
Psychopharmacology (Berl). 2025 Apr 15. doi: 10.1007/s00213-025-06786-y.
10
Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction.
Front Psychiatry. 2025 Jan 14;15:1439727. doi: 10.3389/fpsyt.2024.1439727. eCollection 2024.

本文引用的文献

1
Is slow-onset long-acting monoamine transport blockade to cocaine as methadone is to heroin? Implication for anti-addiction medications.
Neuropsychopharmacology. 2010 Dec;35(13):2564-78. doi: 10.1038/npp.2010.133. Epub 2010 Sep 8.
2
Transition to addiction is associated with a persistent impairment in synaptic plasticity.
Science. 2010 Jun 25;328(5986):1709-12. doi: 10.1126/science.1187801.
5
Safety and efficacy of baclofen in the treatment of alcohol-dependent patients.
Curr Pharm Des. 2010;16(19):2113-7. doi: 10.2174/138161210791516440.
6
Individual differences in novelty-seeking and behavioral responses to nicotine: a review of animal studies.
Curr Drug Abuse Rev. 2009 Sep;2(3):230-42. doi: 10.2174/1874473710902030230.
7
Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction.
Eur J Pharmacol. 2010 Aug 10;639(1-3):115-22. doi: 10.1016/j.ejphar.2010.01.030. Epub 2010 Apr 2.
9
10
Progress in corticotropin-releasing factor-1 antagonist development.
Drug Discov Today. 2010 May;15(9-10):371-83. doi: 10.1016/j.drudis.2010.02.011. Epub 2010 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验