Suppr超能文献

支气管分泌型免疫球蛋白 A 缺乏与气道炎症和慢性阻塞性肺疾病的进展相关。

Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease.

机构信息

Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.

出版信息

Am J Respir Crit Care Med. 2011 Aug 1;184(3):317-27. doi: 10.1164/rccm.201010-1629OC. Epub 2011 Apr 21.

Abstract

RATIONALE

Although airway inflammation can persist for years after smoking cessation in patients with chronic obstructive pulmonary disease (COPD), the mechanisms of persistent inflammation are largely unknown.

OBJECTIVES

We investigated relationships between bronchial epithelial remodeling, polymeric immunoglobulin receptor (pIgR) expression, secretory IgA (SIgA), airway inflammation, and mural remodeling in COPD.

METHODS

Lung tissue specimens and bronchoalveolar lavage were obtained from lifetime nonsmokers and former smokers with or without COPD. Epithelial structural changes were quantified by morphometric analysis. Expression of pIgR was determined by immunostaining and real-time polymerase chain reaction. Immunohistochemistry was performed for IgA, CD4 and CD8 lymphocytes, and cytomegalovirus and Epstein-Barr virus antigens. Total IgA and SIgA were measured by ELISA and IgA transcytosis was studied using cultured human bronchial epithelial cells.

MEASUREMENTS AND MAIN RESULTS

Areas of bronchial mucosa covered by normal pseudostratified ciliated epithelium were characterized by pIgR expression with SIgA present on the mucosal surface. In contrast, areas of bronchial epithelial remodeling had reduced pIgR expression, localized SIgA deficiency, and increased CD4(+) and CD8(+) lymphocyte infiltration. In small airways (<2 mm), these changes were associated with presence of herpesvirus antigens, airway wall remodeling, and airflow limitation in patients with COPD. Patients with COPD had reduced SIgA in bronchoalveolar lavage. Air-liquid interface epithelial cell cultures revealed that complete epithelial differentiation was required for normal pIgR expression and IgA transcytosis.

CONCLUSIONS

Our findings indicate that epithelial structural abnormalities lead to localized SIgA deficiency in COPD airways. Impaired mucosal immunity may contribute to persistent airway inflammation and progressive airway remodeling in COPD.

摘要

背景

尽管在慢性阻塞性肺疾病(COPD)患者中,戒烟后气道炎症仍可持续多年,但持续性炎症的机制在很大程度上尚不清楚。

目的

我们研究了 COPD 患者支气管上皮重塑、多聚免疫球蛋白受体(pIgR)表达、分泌型免疫球蛋白 A(SIgA)、气道炎症和壁层重塑之间的关系。

方法

从终生不吸烟者和有或无 COPD 的前吸烟者中获取肺组织标本和支气管肺泡灌洗液。通过形态计量分析量化上皮结构变化。通过免疫染色和实时聚合酶链反应测定 pIgR 的表达。进行免疫组织化学染色以检测 IgA、CD4 和 CD8 淋巴细胞以及巨细胞病毒和 Epstein-Barr 病毒抗原。通过 ELISA 测量总 IgA 和 SIgA,并使用培养的人支气管上皮细胞研究 IgA 转胞吞作用。

测量和主要结果

覆盖正常假复层纤毛柱状上皮的支气管黏膜区域的特征是 pIgR 表达,黏膜表面存在 SIgA。相比之下,支气管上皮重塑区域的 pIgR 表达减少,局部 SIgA 缺乏,CD4(+)和 CD8(+)淋巴细胞浸润增加。在小气道(<2mm)中,这些变化与疱疹病毒抗原的存在、气道壁重塑以及 COPD 患者的气流受限相关。COPD 患者的支气管肺泡灌洗液中 SIgA 减少。气液界面上皮细胞培养显示,完全的上皮分化是正常 pIgR 表达和 IgA 转胞吞作用所必需的。

结论

我们的研究结果表明,上皮结构异常导致 COPD 气道局部 SIgA 缺乏。黏膜免疫受损可能导致 COPD 患者持续的气道炎症和进行性气道重塑。

相似文献

1
Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2011 Aug 1;184(3):317-27. doi: 10.1164/rccm.201010-1629OC. Epub 2011 Apr 21.
4
Secretory Cells Are the Primary Source of pIgR in Small Airways.
Am J Respir Cell Mol Biol. 2022 Sep;67(3):334-345. doi: 10.1165/rcmb.2021-0548OC.
5
Secretory IgA Deficiency in Individual Small Airways Is Associated with Persistent Inflammation and Remodeling.
Am J Respir Crit Care Med. 2017 Apr 15;195(8):1010-1021. doi: 10.1164/rccm.201604-0759OC.
6
Malondialdehyde-Acetaldehyde Adduct Formation Decreases Immunoglobulin A Transport across Airway Epithelium in Smokers Who Abuse Alcohol.
Am J Pathol. 2021 Oct;191(10):1732-1742. doi: 10.1016/j.ajpath.2021.06.007. Epub 2021 Jun 27.
8
Secretory IgA from submucosal glands does not compensate for its airway surface deficiency in chronic obstructive pulmonary disease.
Virchows Arch. 2015 Dec;467(6):657-665. doi: 10.1007/s00428-015-1854-0. Epub 2015 Oct 2.
9
Secretory Immunoglobulin A Immunity in Chronic Obstructive Respiratory Diseases.
Cells. 2022 Apr 13;11(8):1324. doi: 10.3390/cells11081324.

引用本文的文献

2
3
Inherent immunity and adaptive immunity: Mechanism and role in AECOPD.
Innate Immun. 2025 Jan-Dec;31:17534259251322612. doi: 10.1177/17534259251322612.
4
Klotho Regulates Club Cell Senescence and Differentiation in Chronic Obstructive Pulmonary Disease.
Cell Prolif. 2025 Jul;58(7):e70000. doi: 10.1111/cpr.70000. Epub 2025 Feb 10.
5
Bi-directional regulation between inflammation and stem cells in the respiratory tract.
J Cell Sci. 2024 Nov 1;137(21). doi: 10.1242/jcs.263413. Epub 2024 Nov 7.
6
The memory of airway epithelium damage in smokers and COPD patients.
Life Sci Alliance. 2023 Dec 29;7(3). doi: 10.26508/lsa.202302341. Print 2024 Mar.
7
Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders.
Lung. 2023 Oct;201(5):455-466. doi: 10.1007/s00408-023-00645-3. Epub 2023 Sep 26.
8
SIgA in various pulmonary diseases.
Eur J Med Res. 2023 Aug 27;28(1):299. doi: 10.1186/s40001-023-01282-5.
9
Understanding COPD Etiology, Pathophysiology, and Definition.
Respir Care. 2023 Jul;68(7):859-870. doi: 10.4187/respcare.10873.
10
Basic Science Perspective on Engineering and Modeling the Large Airways.
Adv Exp Med Biol. 2023;1413:73-106. doi: 10.1007/978-3-031-26625-6_5.

本文引用的文献

1
Infection in the pathogenesis and course of chronic obstructive pulmonary disease.
N Engl J Med. 2008 Nov 27;359(22):2355-65. doi: 10.1056/NEJMra0800353.
2
Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease.
Curr Top Microbiol Immunol. 2008;325:417-70. doi: 10.1007/978-3-540-77349-8_23.
3
Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection.
Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1119-26. doi: 10.1152/ajplung.00382.2007. Epub 2008 Apr 4.
4
Dynamics of T cell memory in human cytomegalovirus infection.
Med Microbiol Immunol. 2008 Jun;197(2):83-96. doi: 10.1007/s00430-008-0082-5. Epub 2008 Feb 27.
5
High levels of Epstein-Barr virus in COPD.
Eur Respir J. 2008 Jun;31(6):1221-6. doi: 10.1183/09031936.00107507. Epub 2008 Feb 20.
6
Diagnosis of pathogens in exacerbations of chronic obstructive pulmonary disease.
Proc Am Thorac Soc. 2007 Dec;4(8):642-6. doi: 10.1513/pats.200707-101TH.
7
Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study.
Respir Res. 2007 Nov 26;8(1):85. doi: 10.1186/1465-9921-8-85.
8
The biology of a chronic obstructive pulmonary disease exacerbation.
Clin Chest Med. 2007 Sep;28(3):525-36, v. doi: 10.1016/j.ccm.2007.05.003.
9
Pathogenesis of chronic obstructive pulmonary disease.
Clin Chest Med. 2007 Sep;28(3):479-513, v. doi: 10.1016/j.ccm.2007.06.008.
10
Acute and latent adenovirus in COPD.
Respir Med. 2007 Oct;101(10):2084-90. doi: 10.1016/j.rmed.2007.05.015. Epub 2007 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验