Suppr超能文献

基于黎曼几何的人体手臂动力学、运动优化及不变性研究方法

Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.

作者信息

Biess Armin, Flash Tamar, Liebermann Dario G

机构信息

Bernstein Center for Computational Neuroscience, DE-37073 Göttingen, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031927. doi: 10.1103/PhysRevE.83.031927. Epub 2011 Mar 31.

Abstract

We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.

摘要

我们提出了一种在黎曼配置空间中关于人体手臂动力学和优化原理的广义协变公式。我们将均方导数(MSD)成本泛函的单参数族从欧几里得空间扩展到黎曼空间,并表明当在配备动能度量的黎曼空间中进行公式化时,它们在数学上与相应的动态成本相同。特别是,我们在这个度量空间中推导了最小急动和最小扭矩变化模型的等价性。黎曼空间中MSD变分问题单参数族的解由(重新参数化的)测地线给出,这些测地线对应于肌肉努力最小的运动。最后,从黎曼流形的对称性导出运动不变量。我们认为,施加在手臂配置空间上的几何结构可能为深入了解运动系统产生的运动的新兴特性提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验