Biess Armin, Flash Tamar, Liebermann Dario G
Bernstein Center for Computational Neuroscience, DE-37073 Göttingen, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031927. doi: 10.1103/PhysRevE.83.031927. Epub 2011 Mar 31.
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.
我们提出了一种在黎曼配置空间中关于人体手臂动力学和优化原理的广义协变公式。我们将均方导数(MSD)成本泛函的单参数族从欧几里得空间扩展到黎曼空间,并表明当在配备动能度量的黎曼空间中进行公式化时,它们在数学上与相应的动态成本相同。特别是,我们在这个度量空间中推导了最小急动和最小扭矩变化模型的等价性。黎曼空间中MSD变分问题单参数族的解由(重新参数化的)测地线给出,这些测地线对应于肌肉努力最小的运动。最后,从黎曼流形的对称性导出运动不变量。我们认为,施加在手臂配置空间上的几何结构可能为深入了解运动系统产生的运动的新兴特性提供帮助。